Cargando…
Machine learning of electrophysiological signals for the prediction of ventricular arrhythmias: systematic review and examination of heterogeneity between studies
BACKGROUND: Ventricular arrhythmia (VA) precipitating sudden cardiac arrest (SCD) is among the most frequent causes of death and pose a high burden on public health systems worldwide. The increasing availability of electrophysiological signals collected through conventional methods (e.g. electrocard...
Autores principales: | Kolk, Maarten Z.H., Deb, Brototo, Ruipérez-Campillo, Samuel, Bhatia, Neil K., Clopton, Paul, Wilde, Arthur A.M., Narayan, Sanjiv M., Knops, Reinoud E., Tjong, Fleur V.Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945642/ https://www.ncbi.nlm.nih.gov/pubmed/36773349 http://dx.doi.org/10.1016/j.ebiom.2023.104462 |
Ejemplares similares
-
Reduction in long-term mortality using remote device monitoring in a large real-world population of patients with implantable defibrillators
por: Kolk, Maarten Z H, et al.
Publicado: (2023) -
Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit
por: Kolk, Maarten Z H, et al.
Publicado: (2023) -
Segmenting computed tomograms for cardiac ablation using machine learning leveraged by domain knowledge encoding
por: Feng, Ruibin, et al.
Publicado: (2023) -
Quantifying a spectrum of clinical response in atrial tachyarrhythmias using spatiotemporal synchronization of electrograms
por: Ganesan, Prasanth, et al.
Publicado: (2023) -
Rationale and design of the SafeHeart study: Development and testing of a mHealth tool for the prediction of arrhythmic events and implantable cardioverter-defibrillator therapy
por: Frodi, Diana M., et al.
Publicado: (2021)