Cargando…
Synthesizing multi-frame high-resolution fluorescein angiography images from retinal fundus images using generative adversarial networks
BACKGROUND: Fundus fluorescein angiography (FA) can be used to diagnose fundus diseases by observing dynamic fluorescein changes that reflect vascular circulation in the fundus. As FA may pose a risk to patients, generative adversarial networks have been used to convert retinal fundus images into fl...
Autores principales: | Li, Ping, He, Yi, Wang, Pinghe, Wang, Jing, Shi, Guohua, Chen, Yiwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945680/ https://www.ncbi.nlm.nih.gov/pubmed/36810105 http://dx.doi.org/10.1186/s12938-023-01070-6 |
Ejemplares similares
-
A super-resolution method-based pipeline for fundus fluorescein angiography imaging
por: Jiang, Zhe, et al.
Publicado: (2018) -
RF-GANs: A Method to Synthesize Retinal Fundus Images Based on Generative Adversarial Network
por: Chen, Yu, et al.
Publicado: (2021) -
Ultra-widefield fundus fluorescein angiography in pediatric retinal vascular diseases
por: Temkar, Shreyas, et al.
Publicado: (2019) -
A novel deep learning conditional generative adversarial network for producing angiography images from retinal fundus photographs
por: Tavakkoli, Alireza, et al.
Publicado: (2020) -
Quantification of retinal blood leakage in fundus fluorescein angiography in a retinal angiogenesis model
por: Comin, Cesar H., et al.
Publicado: (2021)