Cargando…
The role of baroclinic activity in controlling Earth’s albedo in the present and future climates
Clouds are one of the most influential components of Earth’s climate system. Specifically, the midlatitude clouds play a vital role in shaping Earth’s albedo. This study investigates the connection between baroclinic activity, which dominates the midlatitude climate, and cloud-albedo and how it rela...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945990/ https://www.ncbi.nlm.nih.gov/pubmed/36706219 http://dx.doi.org/10.1073/pnas.2208778120 |
_version_ | 1784892243013795840 |
---|---|
author | Hadas, Or Datseris, George Blanco, Joaquin Bony, Sandrine Caballero, Rodrigo Stevens, Bjorn Kaspi, Yohai |
author_facet | Hadas, Or Datseris, George Blanco, Joaquin Bony, Sandrine Caballero, Rodrigo Stevens, Bjorn Kaspi, Yohai |
author_sort | Hadas, Or |
collection | PubMed |
description | Clouds are one of the most influential components of Earth’s climate system. Specifically, the midlatitude clouds play a vital role in shaping Earth’s albedo. This study investigates the connection between baroclinic activity, which dominates the midlatitude climate, and cloud-albedo and how it relates to Earth’s existing hemispheric albedo symmetry. We show that baroclinic activity and cloud-albedo are highly correlated. By using Lagrangian tracking of cyclones and anticyclones and analyzing their individual cloud properties at different vertical levels, we explain why their cloud-albedo increases monotonically with intensity. We find that while for anticyclones, the relation between strength and cloudiness is mostly linear, for cyclones, in which clouds are more prevalent, the relation saturates with strength. Using the cloud-albedo strength relationships and the climatology of baroclinic activity, we demonstrate that the observed hemispheric difference in cloud-albedo is well explained by the difference in the population of cyclones and anticyclones, which counter-balances the difference in clear-sky albedo. Finally, we discuss the robustness of the hemispheric albedo symmetry in the future climate. Seemingly, the symmetry should break, as the northern hemisphere’s storm track response differs from that of the southern hemisphere due to Arctic amplification. However, we show that the saturation of the cloud response to storm intensity implies that the increase in the skewness of the southern hemisphere storm distribution toward strong storms will decrease future cloud-albedo in the southern hemisphere. This complex response explains how albedo symmetry might persist even with the predicted asymmetric hemispheric change in baroclinicity under climate change. |
format | Online Article Text |
id | pubmed-9945990 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-99459902023-02-23 The role of baroclinic activity in controlling Earth’s albedo in the present and future climates Hadas, Or Datseris, George Blanco, Joaquin Bony, Sandrine Caballero, Rodrigo Stevens, Bjorn Kaspi, Yohai Proc Natl Acad Sci U S A Physical Sciences Clouds are one of the most influential components of Earth’s climate system. Specifically, the midlatitude clouds play a vital role in shaping Earth’s albedo. This study investigates the connection between baroclinic activity, which dominates the midlatitude climate, and cloud-albedo and how it relates to Earth’s existing hemispheric albedo symmetry. We show that baroclinic activity and cloud-albedo are highly correlated. By using Lagrangian tracking of cyclones and anticyclones and analyzing their individual cloud properties at different vertical levels, we explain why their cloud-albedo increases monotonically with intensity. We find that while for anticyclones, the relation between strength and cloudiness is mostly linear, for cyclones, in which clouds are more prevalent, the relation saturates with strength. Using the cloud-albedo strength relationships and the climatology of baroclinic activity, we demonstrate that the observed hemispheric difference in cloud-albedo is well explained by the difference in the population of cyclones and anticyclones, which counter-balances the difference in clear-sky albedo. Finally, we discuss the robustness of the hemispheric albedo symmetry in the future climate. Seemingly, the symmetry should break, as the northern hemisphere’s storm track response differs from that of the southern hemisphere due to Arctic amplification. However, we show that the saturation of the cloud response to storm intensity implies that the increase in the skewness of the southern hemisphere storm distribution toward strong storms will decrease future cloud-albedo in the southern hemisphere. This complex response explains how albedo symmetry might persist even with the predicted asymmetric hemispheric change in baroclinicity under climate change. National Academy of Sciences 2023-01-27 2023-01-31 /pmc/articles/PMC9945990/ /pubmed/36706219 http://dx.doi.org/10.1073/pnas.2208778120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Hadas, Or Datseris, George Blanco, Joaquin Bony, Sandrine Caballero, Rodrigo Stevens, Bjorn Kaspi, Yohai The role of baroclinic activity in controlling Earth’s albedo in the present and future climates |
title | The role of baroclinic activity in controlling Earth’s albedo in the present and future climates |
title_full | The role of baroclinic activity in controlling Earth’s albedo in the present and future climates |
title_fullStr | The role of baroclinic activity in controlling Earth’s albedo in the present and future climates |
title_full_unstemmed | The role of baroclinic activity in controlling Earth’s albedo in the present and future climates |
title_short | The role of baroclinic activity in controlling Earth’s albedo in the present and future climates |
title_sort | role of baroclinic activity in controlling earth’s albedo in the present and future climates |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945990/ https://www.ncbi.nlm.nih.gov/pubmed/36706219 http://dx.doi.org/10.1073/pnas.2208778120 |
work_keys_str_mv | AT hadasor theroleofbaroclinicactivityincontrollingearthsalbedointhepresentandfutureclimates AT datserisgeorge theroleofbaroclinicactivityincontrollingearthsalbedointhepresentandfutureclimates AT blancojoaquin theroleofbaroclinicactivityincontrollingearthsalbedointhepresentandfutureclimates AT bonysandrine theroleofbaroclinicactivityincontrollingearthsalbedointhepresentandfutureclimates AT caballerorodrigo theroleofbaroclinicactivityincontrollingearthsalbedointhepresentandfutureclimates AT stevensbjorn theroleofbaroclinicactivityincontrollingearthsalbedointhepresentandfutureclimates AT kaspiyohai theroleofbaroclinicactivityincontrollingearthsalbedointhepresentandfutureclimates AT hadasor roleofbaroclinicactivityincontrollingearthsalbedointhepresentandfutureclimates AT datserisgeorge roleofbaroclinicactivityincontrollingearthsalbedointhepresentandfutureclimates AT blancojoaquin roleofbaroclinicactivityincontrollingearthsalbedointhepresentandfutureclimates AT bonysandrine roleofbaroclinicactivityincontrollingearthsalbedointhepresentandfutureclimates AT caballerorodrigo roleofbaroclinicactivityincontrollingearthsalbedointhepresentandfutureclimates AT stevensbjorn roleofbaroclinicactivityincontrollingearthsalbedointhepresentandfutureclimates AT kaspiyohai roleofbaroclinicactivityincontrollingearthsalbedointhepresentandfutureclimates |