Cargando…
High gamma activity distinguishes frontal cognitive control regions from adjacent cortical networks
Though the lateral frontal cortex is broadly implicated in cognitive control, functional MRI (fMRI) studies suggest fine-grained distinctions within this region. To examine this question electrophysiologically, we placed electrodes on the lateral frontal cortex in patients undergoing awake craniotom...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Masson
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9946792/ https://www.ncbi.nlm.nih.gov/pubmed/36645968 http://dx.doi.org/10.1016/j.cortex.2022.12.007 |
_version_ | 1784892410613989376 |
---|---|
author | Assem, Moataz Hart, Michael G. Coelho, Pedro Romero-Garcia, Rafael McDonald, Alexa Woodberry, Emma Morris, Robert C. Price, Stephen J. Suckling, John Santarius, Thomas Duncan, John Erez, Yaara |
author_facet | Assem, Moataz Hart, Michael G. Coelho, Pedro Romero-Garcia, Rafael McDonald, Alexa Woodberry, Emma Morris, Robert C. Price, Stephen J. Suckling, John Santarius, Thomas Duncan, John Erez, Yaara |
author_sort | Assem, Moataz |
collection | PubMed |
description | Though the lateral frontal cortex is broadly implicated in cognitive control, functional MRI (fMRI) studies suggest fine-grained distinctions within this region. To examine this question electrophysiologically, we placed electrodes on the lateral frontal cortex in patients undergoing awake craniotomy for tumor resection. Patients performed verbal tasks with a manipulation of attentional switching, a canonical control demand. Power in the high gamma range (70–250 Hz) distinguished electrodes based on their location within a high-resolution fMRI network parcellation of the frontal lobe. Electrodes within the canonical fronto-parietal control network showed increased power in the switching condition, a result absent in electrodes within default mode, language and somato-motor networks. High gamma results contrasted with spatially distributed power decreases in the beta range (12–30 Hz). These results confirm the importance of fine-scale functional distinctions within the human frontal lobe, and pave the way for increased precision of functional mapping in tumor surgeries. |
format | Online Article Text |
id | pubmed-9946792 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Masson |
record_format | MEDLINE/PubMed |
spelling | pubmed-99467922023-02-23 High gamma activity distinguishes frontal cognitive control regions from adjacent cortical networks Assem, Moataz Hart, Michael G. Coelho, Pedro Romero-Garcia, Rafael McDonald, Alexa Woodberry, Emma Morris, Robert C. Price, Stephen J. Suckling, John Santarius, Thomas Duncan, John Erez, Yaara Cortex Research Report Though the lateral frontal cortex is broadly implicated in cognitive control, functional MRI (fMRI) studies suggest fine-grained distinctions within this region. To examine this question electrophysiologically, we placed electrodes on the lateral frontal cortex in patients undergoing awake craniotomy for tumor resection. Patients performed verbal tasks with a manipulation of attentional switching, a canonical control demand. Power in the high gamma range (70–250 Hz) distinguished electrodes based on their location within a high-resolution fMRI network parcellation of the frontal lobe. Electrodes within the canonical fronto-parietal control network showed increased power in the switching condition, a result absent in electrodes within default mode, language and somato-motor networks. High gamma results contrasted with spatially distributed power decreases in the beta range (12–30 Hz). These results confirm the importance of fine-scale functional distinctions within the human frontal lobe, and pave the way for increased precision of functional mapping in tumor surgeries. Masson 2023-02 /pmc/articles/PMC9946792/ /pubmed/36645968 http://dx.doi.org/10.1016/j.cortex.2022.12.007 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Report Assem, Moataz Hart, Michael G. Coelho, Pedro Romero-Garcia, Rafael McDonald, Alexa Woodberry, Emma Morris, Robert C. Price, Stephen J. Suckling, John Santarius, Thomas Duncan, John Erez, Yaara High gamma activity distinguishes frontal cognitive control regions from adjacent cortical networks |
title | High gamma activity distinguishes frontal cognitive control regions from adjacent cortical networks |
title_full | High gamma activity distinguishes frontal cognitive control regions from adjacent cortical networks |
title_fullStr | High gamma activity distinguishes frontal cognitive control regions from adjacent cortical networks |
title_full_unstemmed | High gamma activity distinguishes frontal cognitive control regions from adjacent cortical networks |
title_short | High gamma activity distinguishes frontal cognitive control regions from adjacent cortical networks |
title_sort | high gamma activity distinguishes frontal cognitive control regions from adjacent cortical networks |
topic | Research Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9946792/ https://www.ncbi.nlm.nih.gov/pubmed/36645968 http://dx.doi.org/10.1016/j.cortex.2022.12.007 |
work_keys_str_mv | AT assemmoataz highgammaactivitydistinguishesfrontalcognitivecontrolregionsfromadjacentcorticalnetworks AT hartmichaelg highgammaactivitydistinguishesfrontalcognitivecontrolregionsfromadjacentcorticalnetworks AT coelhopedro highgammaactivitydistinguishesfrontalcognitivecontrolregionsfromadjacentcorticalnetworks AT romerogarciarafael highgammaactivitydistinguishesfrontalcognitivecontrolregionsfromadjacentcorticalnetworks AT mcdonaldalexa highgammaactivitydistinguishesfrontalcognitivecontrolregionsfromadjacentcorticalnetworks AT woodberryemma highgammaactivitydistinguishesfrontalcognitivecontrolregionsfromadjacentcorticalnetworks AT morrisrobertc highgammaactivitydistinguishesfrontalcognitivecontrolregionsfromadjacentcorticalnetworks AT pricestephenj highgammaactivitydistinguishesfrontalcognitivecontrolregionsfromadjacentcorticalnetworks AT sucklingjohn highgammaactivitydistinguishesfrontalcognitivecontrolregionsfromadjacentcorticalnetworks AT santariusthomas highgammaactivitydistinguishesfrontalcognitivecontrolregionsfromadjacentcorticalnetworks AT duncanjohn highgammaactivitydistinguishesfrontalcognitivecontrolregionsfromadjacentcorticalnetworks AT erezyaara highgammaactivitydistinguishesfrontalcognitivecontrolregionsfromadjacentcorticalnetworks |