Cargando…

A NPAS4–NuA4 complex couples synaptic activity to DNA repair

Neuronal activity is crucial for adaptive circuit remodelling but poses an inherent risk to the stability of the genome across the long lifespan of postmitotic neurons(1–5). Whether neurons have acquired specialized genome protection mechanisms that enable them to withstand decades of potentially da...

Descripción completa

Detalles Bibliográficos
Autores principales: Pollina, Elizabeth A., Gilliam, Daniel T., Landau, Andrew T., Lin, Cindy, Pajarillo, Naomi, Davis, Christopher P., Harmin, David A., Yap, Ee-Lynn, Vogel, Ian R., Griffith, Eric C., Nagy, M. Aurel, Ling, Emi, Duffy, Erin E., Sabatini, Bernardo L., Weitz, Charles J., Greenberg, Michael E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9946837/
https://www.ncbi.nlm.nih.gov/pubmed/36792830
http://dx.doi.org/10.1038/s41586-023-05711-7
_version_ 1784892419900178432
author Pollina, Elizabeth A.
Gilliam, Daniel T.
Landau, Andrew T.
Lin, Cindy
Pajarillo, Naomi
Davis, Christopher P.
Harmin, David A.
Yap, Ee-Lynn
Vogel, Ian R.
Griffith, Eric C.
Nagy, M. Aurel
Ling, Emi
Duffy, Erin E.
Sabatini, Bernardo L.
Weitz, Charles J.
Greenberg, Michael E.
author_facet Pollina, Elizabeth A.
Gilliam, Daniel T.
Landau, Andrew T.
Lin, Cindy
Pajarillo, Naomi
Davis, Christopher P.
Harmin, David A.
Yap, Ee-Lynn
Vogel, Ian R.
Griffith, Eric C.
Nagy, M. Aurel
Ling, Emi
Duffy, Erin E.
Sabatini, Bernardo L.
Weitz, Charles J.
Greenberg, Michael E.
author_sort Pollina, Elizabeth A.
collection PubMed
description Neuronal activity is crucial for adaptive circuit remodelling but poses an inherent risk to the stability of the genome across the long lifespan of postmitotic neurons(1–5). Whether neurons have acquired specialized genome protection mechanisms that enable them to withstand decades of potentially damaging stimuli during periods of heightened activity is unknown. Here we identify an activity-dependent DNA repair mechanism in which a new form of the NuA4–TIP60 chromatin modifier assembles in activated neurons around the inducible, neuronal-specific transcription factor NPAS4. We purify this complex from the brain and demonstrate its functions in eliciting activity-dependent changes to neuronal transcriptomes and circuitry. By characterizing the landscape of activity-induced DNA double-strand breaks in the brain, we show that NPAS4–NuA4 binds to recurrently damaged regulatory elements and recruits additional DNA repair machinery to stimulate their repair. Gene regulatory elements bound by NPAS4–NuA4 are partially protected against age-dependent accumulation of somatic mutations. Impaired NPAS4–NuA4 signalling leads to a cascade of cellular defects, including dysregulated activity-dependent transcriptional responses, loss of control over neuronal inhibition and genome instability, which all culminate to reduce organismal lifespan. In addition, mutations in several components of the NuA4 complex are reported to lead to neurodevelopmental and autism spectrum disorders. Together, these findings identify a neuronal-specific complex that couples neuronal activity directly to genome preservation, the disruption of which may contribute to developmental disorders, neurodegeneration and ageing.
format Online
Article
Text
id pubmed-9946837
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-99468372023-02-24 A NPAS4–NuA4 complex couples synaptic activity to DNA repair Pollina, Elizabeth A. Gilliam, Daniel T. Landau, Andrew T. Lin, Cindy Pajarillo, Naomi Davis, Christopher P. Harmin, David A. Yap, Ee-Lynn Vogel, Ian R. Griffith, Eric C. Nagy, M. Aurel Ling, Emi Duffy, Erin E. Sabatini, Bernardo L. Weitz, Charles J. Greenberg, Michael E. Nature Article Neuronal activity is crucial for adaptive circuit remodelling but poses an inherent risk to the stability of the genome across the long lifespan of postmitotic neurons(1–5). Whether neurons have acquired specialized genome protection mechanisms that enable them to withstand decades of potentially damaging stimuli during periods of heightened activity is unknown. Here we identify an activity-dependent DNA repair mechanism in which a new form of the NuA4–TIP60 chromatin modifier assembles in activated neurons around the inducible, neuronal-specific transcription factor NPAS4. We purify this complex from the brain and demonstrate its functions in eliciting activity-dependent changes to neuronal transcriptomes and circuitry. By characterizing the landscape of activity-induced DNA double-strand breaks in the brain, we show that NPAS4–NuA4 binds to recurrently damaged regulatory elements and recruits additional DNA repair machinery to stimulate their repair. Gene regulatory elements bound by NPAS4–NuA4 are partially protected against age-dependent accumulation of somatic mutations. Impaired NPAS4–NuA4 signalling leads to a cascade of cellular defects, including dysregulated activity-dependent transcriptional responses, loss of control over neuronal inhibition and genome instability, which all culminate to reduce organismal lifespan. In addition, mutations in several components of the NuA4 complex are reported to lead to neurodevelopmental and autism spectrum disorders. Together, these findings identify a neuronal-specific complex that couples neuronal activity directly to genome preservation, the disruption of which may contribute to developmental disorders, neurodegeneration and ageing. Nature Publishing Group UK 2023-02-15 2023 /pmc/articles/PMC9946837/ /pubmed/36792830 http://dx.doi.org/10.1038/s41586-023-05711-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article′s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article′s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Pollina, Elizabeth A.
Gilliam, Daniel T.
Landau, Andrew T.
Lin, Cindy
Pajarillo, Naomi
Davis, Christopher P.
Harmin, David A.
Yap, Ee-Lynn
Vogel, Ian R.
Griffith, Eric C.
Nagy, M. Aurel
Ling, Emi
Duffy, Erin E.
Sabatini, Bernardo L.
Weitz, Charles J.
Greenberg, Michael E.
A NPAS4–NuA4 complex couples synaptic activity to DNA repair
title A NPAS4–NuA4 complex couples synaptic activity to DNA repair
title_full A NPAS4–NuA4 complex couples synaptic activity to DNA repair
title_fullStr A NPAS4–NuA4 complex couples synaptic activity to DNA repair
title_full_unstemmed A NPAS4–NuA4 complex couples synaptic activity to DNA repair
title_short A NPAS4–NuA4 complex couples synaptic activity to DNA repair
title_sort npas4–nua4 complex couples synaptic activity to dna repair
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9946837/
https://www.ncbi.nlm.nih.gov/pubmed/36792830
http://dx.doi.org/10.1038/s41586-023-05711-7
work_keys_str_mv AT pollinaelizabetha anpas4nua4complexcouplessynapticactivitytodnarepair
AT gilliamdanielt anpas4nua4complexcouplessynapticactivitytodnarepair
AT landauandrewt anpas4nua4complexcouplessynapticactivitytodnarepair
AT lincindy anpas4nua4complexcouplessynapticactivitytodnarepair
AT pajarillonaomi anpas4nua4complexcouplessynapticactivitytodnarepair
AT davischristopherp anpas4nua4complexcouplessynapticactivitytodnarepair
AT harmindavida anpas4nua4complexcouplessynapticactivitytodnarepair
AT yapeelynn anpas4nua4complexcouplessynapticactivitytodnarepair
AT vogelianr anpas4nua4complexcouplessynapticactivitytodnarepair
AT griffithericc anpas4nua4complexcouplessynapticactivitytodnarepair
AT nagymaurel anpas4nua4complexcouplessynapticactivitytodnarepair
AT lingemi anpas4nua4complexcouplessynapticactivitytodnarepair
AT duffyerine anpas4nua4complexcouplessynapticactivitytodnarepair
AT sabatinibernardol anpas4nua4complexcouplessynapticactivitytodnarepair
AT weitzcharlesj anpas4nua4complexcouplessynapticactivitytodnarepair
AT greenbergmichaele anpas4nua4complexcouplessynapticactivitytodnarepair
AT pollinaelizabetha npas4nua4complexcouplessynapticactivitytodnarepair
AT gilliamdanielt npas4nua4complexcouplessynapticactivitytodnarepair
AT landauandrewt npas4nua4complexcouplessynapticactivitytodnarepair
AT lincindy npas4nua4complexcouplessynapticactivitytodnarepair
AT pajarillonaomi npas4nua4complexcouplessynapticactivitytodnarepair
AT davischristopherp npas4nua4complexcouplessynapticactivitytodnarepair
AT harmindavida npas4nua4complexcouplessynapticactivitytodnarepair
AT yapeelynn npas4nua4complexcouplessynapticactivitytodnarepair
AT vogelianr npas4nua4complexcouplessynapticactivitytodnarepair
AT griffithericc npas4nua4complexcouplessynapticactivitytodnarepair
AT nagymaurel npas4nua4complexcouplessynapticactivitytodnarepair
AT lingemi npas4nua4complexcouplessynapticactivitytodnarepair
AT duffyerine npas4nua4complexcouplessynapticactivitytodnarepair
AT sabatinibernardol npas4nua4complexcouplessynapticactivitytodnarepair
AT weitzcharlesj npas4nua4complexcouplessynapticactivitytodnarepair
AT greenbergmichaele npas4nua4complexcouplessynapticactivitytodnarepair