Cargando…
A computational model of learning flexible navigation in a maze by layout-conforming replay of place cells
Recent experimental observations have shown that the reactivation of hippocampal place cells (PC) during sleep or wakeful immobility depicts trajectories that can go around barriers and can flexibly adapt to a changing maze layout. However, existing computational models of replay fall short of gener...
Autor principal: | Gao, Yuanxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9947252/ https://www.ncbi.nlm.nih.gov/pubmed/36846726 http://dx.doi.org/10.3389/fncom.2023.1053097 |
Ejemplares similares
-
A simple model of cued T-Maze learning based on basal ganglia anatomy and sequence replay
por: Ponzi, Adam
Publicado: (2007) -
Modelling learning in
Caenorhabditis elegans
chemosensory and locomotive circuitry for T‐maze navigation
por: Sakelaris, Bennet G., et al.
Publicado: (2022) -
Methodological Caveats in the Detection of Coordinated Replay between Place Cells and Grid Cells
por: Trimper, John B., et al.
Publicado: (2017) -
Theta-modulation drives the emergence of connectivity patterns underlying replay in a network model of place cells
por: Theodoni, Panagiota, et al.
Publicado: (2018) -
Let’s replay
por: Rasch, Björn
Publicado: (2018)