Cargando…
Unsupervised many-to-many stain translation for histological image augmentation to improve classification accuracy
BACKGROUND: Deep learning tasks, which require large numbers of images, are widely applied in digital pathology. This poses challenges especially for supervised tasks since manual image annotation is an expensive and laborious process. This situation deteriorates even more in the case of a large var...
Autores principales: | Berijanian, Maryam, Schaadt, Nadine S., Huang, Boqiang, Lotz, Johannes, Feuerhake, Friedrich, Merhof, Dorit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9947329/ https://www.ncbi.nlm.nih.gov/pubmed/36844704 http://dx.doi.org/10.1016/j.jpi.2023.100195 |
Ejemplares similares
-
Improving unsupervised stain-to-stain translation using self-supervision and meta-learning
por: Bouteldja, Nassim, et al.
Publicado: (2022) -
Semi-automated analysis of digital whole slides from humanized lung-cancer xenograft models for checkpoint inhibitor response prediction
por: Bug, Daniel, et al.
Publicado: (2019) -
Simultaneous detection of many T-cell specificities using combinatorial tetramer staining
por: Newell, Evan W., et al.
Publicado: (2009) -
The many routes to regulating mRNA translation
por: Baker, Kristian E, et al.
Publicado: (2006) -
An unsupervised learning approach for tracking mice in an enclosed area
por: Unger, Jakob, et al.
Publicado: (2017)