Cargando…

Research on steel rail surface defects detection based on improved YOLOv4 network

INTRODUCTION: The surface images of steel rails are extremely difficult to detect and recognize due to the presence of interference such as light changes and texture background clutter during the acquisition process. METHODS: To improve the accuracy of railway defects detection, a deep learning algo...

Descripción completa

Detalles Bibliográficos
Autores principales: Mi, Zengzhen, Chen, Ren, Zhao, Shanshan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9947530/
https://www.ncbi.nlm.nih.gov/pubmed/36845065
http://dx.doi.org/10.3389/fnbot.2023.1119896

Ejemplares similares