Cargando…
Research on steel rail surface defects detection based on improved YOLOv4 network
INTRODUCTION: The surface images of steel rails are extremely difficult to detect and recognize due to the presence of interference such as light changes and texture background clutter during the acquisition process. METHODS: To improve the accuracy of railway defects detection, a deep learning algo...
Autores principales: | Mi, Zengzhen, Chen, Ren, Zhao, Shanshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9947530/ https://www.ncbi.nlm.nih.gov/pubmed/36845065 http://dx.doi.org/10.3389/fnbot.2023.1119896 |
Ejemplares similares
-
Strip steel surface defect detection based on lightweight YOLOv5
por: Zhang, Yongping, et al.
Publicado: (2023) -
MSFT-YOLO: Improved YOLOv5 Based on Transformer for Detecting Defects of Steel Surface
por: Guo, Zexuan, et al.
Publicado: (2022) -
MR-YOLO: An Improved YOLOv5 Network for Detecting Magnetic Ring Surface Defects
por: Lang, Xianli, et al.
Publicado: (2022) -
GRP-YOLOv5: An Improved Bearing Defect Detection Algorithm Based on YOLOv5
por: Zhao, Yue, et al.
Publicado: (2023) -
Surface Defect Detection of Bearing Rings Based on an Improved YOLOv5 Network
por: Xu, Haitao, et al.
Publicado: (2023)