Cargando…
Risk factor identification and prediction models for prolonged length of stay in hospital after acute ischemic stroke using artificial neural networks
BACKGROUND: Accurate estimation of prolonged length of hospital stay after acute ischemic stroke provides crucial information on medical expenditure and subsequent disposition. This study used artificial neural networks to identify risk factors and build prediction models for a prolonged length of s...
Autores principales: | Yang, Cheng-Chang, Bamodu, Oluwaseun Adebayo, Chan, Lung, Chen, Jia-Hung, Hong, Chien-Tai, Huang, Yi-Ting, Chung, Chen-Chih |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9947790/ https://www.ncbi.nlm.nih.gov/pubmed/36846116 http://dx.doi.org/10.3389/fneur.2023.1085178 |
Ejemplares similares
-
Artificial neural network based prediction of postthrombolysis intracerebral hemorrhage and death
por: Chung, Chen-Chih, et al.
Publicado: (2020) -
Artificial neural network-boosted Cardiac Arrest Survival Post-Resuscitation In-hospital (CASPRI) score accurately predicts outcome in cardiac arrest patients treated with targeted temperature management
por: Chou, Szu-Yi, et al.
Publicado: (2022) -
Neurofilament light chain level in plasma extracellular vesicles and
Parkinson’s disease
por: Chung, Chen-Chih, et al.
Publicado: (2020) -
Blood Neurofilament Light Chain in Parkinson’s Disease: Comparability between Parkinson’s Progression Markers Initiative (PPMI) and Asian Cohorts
por: Chen, Jia-Hung, et al.
Publicado: (2021) -
Determinants of Prolonged Length of Hospital Stay in Patients with Severe Acute Ischemic Stroke
por: Lin, Kuan-Hung, et al.
Publicado: (2022)