Cargando…
Deep learning of protein sequence design of protein–protein interactions
MOTIVATION: As more data of experimentally determined protein structures are becoming available, data-driven models to describe protein sequence–structure relationships become more feasible. Within this space, the amino acid sequence design of protein–protein interactions is still a rather challengi...
Autores principales: | Syrlybaeva, Raulia, Strauch, Eva-Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9947925/ https://www.ncbi.nlm.nih.gov/pubmed/36377772 http://dx.doi.org/10.1093/bioinformatics/btac733 |
Ejemplares similares
-
ProteinBERT: a universal deep-learning model of protein sequence and function
por: Brandes, Nadav, et al.
Publicado: (2022) -
Robust deep learning based protein sequence design using ProteinMPNN
por: Dauparas, J., et al.
Publicado: (2022) -
Protein Design with Deep Learning
por: Defresne, Marianne, et al.
Publicado: (2021) -
PhosIDN: an integrated deep neural network for improving protein phosphorylation site prediction by combining sequence and protein–protein interaction information
por: Yang, Hangyuan, et al.
Publicado: (2021) -
Sequence-based prediction of protein protein interaction using a deep-learning algorithm
por: Sun, Tanlin, et al.
Publicado: (2017)