Cargando…
Novel Framework for Simulated Moving Bed Reactor Optimization Based on Deep Neural Network Models and Metaheuristic Optimizers: An Approach with Optimality Guarantee
[Image: see text] Model-based optimization of simulated moving bed reactors (SMBRs) requires efficient solvers and significant computational power. Over the past years, surrogate models have been considered for such computationally demanding optimization problems. In this sense, artificial neural ne...
Autores principales: | Santana, Vinícius V., Martins, Márcio A. F., Loureiro, José M., Ribeiro, Ana M., Queiroz, Luana P., Rebello, Carine M., Rodrigues, Alírio E., Nogueira, Idelfonso B. R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9947986/ https://www.ncbi.nlm.nih.gov/pubmed/36844544 http://dx.doi.org/10.1021/acsomega.2c06737 |
Ejemplares similares
-
Metaheuristic Framework
for Material Screening and
Operating Optimization of Adsorption-Based Heat Pumps
por: Silva, Beatriz C., et al.
Publicado: (2023) -
A Reinforcement Learning Framework to Discover Natural Flavor Molecules
por: Queiroz, Luana P., et al.
Publicado: (2023) -
Generating Flavor
Molecules Using Scientific Machine
Learning
por: Queiroz, Luana P., et al.
Publicado: (2023) -
Metaheuristics for Dynamic Optimization
por: Alba, Enrique, et al.
Publicado: (2013) -
Metaheuristic optimization in power engineering
por: Radosavljević, Jordan
Publicado: (2018)