Cargando…

Qualitative and Quantitative Analyses of the Chemical Components of Peels from Different Pomelo Cultivars (Citrus grandis [L.] Osbeck) Based on Gas Chromatography–Mass Spectrometry, Ultraperformance Liquid Chromatography-Q-Exactive Orbitrap-MS, and High-Performance Liquid Chromatography-Photodiode Array Detection

[Image: see text] The volatile and nonvolatile phytochemicals in peels of 5 major pomelo cultivars (including Citrus grandis cv. Yuhuanyou, C. grandis cv. Liangpingyou, C. grandis cv. Guanximiyou, C. grandis cv. Duweiwendanyou, and C. grandis cv. Shatianyou) from 11 places in China were characterize...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Boqing, Tian, Jingyuan, Wang, Kanghui, Yang, Wanling, Ning, Jinrong, Liang, Yiyao, Liu, Yujie, Li, Yongmei, Zheng, Guodong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948162/
https://www.ncbi.nlm.nih.gov/pubmed/36844509
http://dx.doi.org/10.1021/acsomega.2c05514
Descripción
Sumario:[Image: see text] The volatile and nonvolatile phytochemicals in peels of 5 major pomelo cultivars (including Citrus grandis cv. Yuhuanyou, C. grandis cv. Liangpingyou, C. grandis cv. Guanximiyou, C. grandis cv. Duweiwendanyou, and C. grandis cv. Shatianyou) from 11 places in China were characterized. First, 194 volatile compounds in pomelo peels were identified by gas chromatography–mass spectrometry (GC–MS). Of these, 20 major volatile compounds were subjected to cluster analysis. The heatmap indicated that the volatile compounds in peels of C. grandis cv. Shatianyou and C. grandis cv. Liangpingyou were different from those in other varieties, while there was no difference among C. grandis cv. Guanximiyou, C. grandis cv. Yuhuanyou, and C. grandis cv. Duweiwendanyou from different origins. Second, 53 nonvolatile compounds were identified in pomelo peels by ultraperformance liquid chromatography-Q-exactive orbitrap tandem MS (UPLC-Q-exactive orbitrap-MS), of which 11 components were detected for the first time. Third, six major nonvolatile compounds were quantitatively analyzed with high-performance LC-photodiode array detection (HPLC-PDA). Combining the results of HPLC-PDA and the heatmap, 6 nonvolatile compounds in 12 batches of pomelo peel were well separated among varieties. Comprehensive analysis and identification of chemical components in pomelo peels are of great significance for their further development and utilization.