Cargando…

Retrospective analysis of Plasmodium vivax genomes from a pre-elimination China inland population in the 2010s

INTRODUCTION: In malaria-free countries, imported cases are challenging because interconnections with neighboring countries with higher transmission rates increase the risk of parasite reintroduction. Establishing a genetic database for rapidly identifying malaria importation or reintroduction is cr...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Ying, Zhang, Tao, Chen, Shen-Bo, Cui, Yan-Bing, Wang, Shu-Qi, Zhang, Hong-Wei, Shen, Hai-Mo, Chen, Jun-Hu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948256/
https://www.ncbi.nlm.nih.gov/pubmed/36846776
http://dx.doi.org/10.3389/fmicb.2023.1071689
Descripción
Sumario:INTRODUCTION: In malaria-free countries, imported cases are challenging because interconnections with neighboring countries with higher transmission rates increase the risk of parasite reintroduction. Establishing a genetic database for rapidly identifying malaria importation or reintroduction is crucial in addressing these challenges. This study aimed to examine genomic epidemiology during the pre-elimination stage by retrospectively reporting whole-genome sequence variation of 10 Plasmodium vivax isolates from inland China. METHODS: The samples were collected during the last few inland outbreaks from 2011 to 2012 when China implemented a malaria control plan. After next-generation sequencing, we completed a genetic analysis of the population, explored the geographic specificity of the samples, and examined clustering of selection pressures. We also scanned genes for signals of positive selection. RESULTS: China’s inland populations were highly structured compared to the surrounding area, with a single potential ancestor. Additionally, we identified genes under selection and evaluated the selection pressure on drug-resistance genes. In the inland population, positive selection was detected in some critical gene families, including sera, msp3, and vir. Meanwhile, we identified selection signatures in drug resistance, such as ugt, krs1, and crt, and noticed that the ratio of wild-type dhps and dhfr-ts increased after China banned sulfadoxine-pyrimethamine (SP) for decades. DISCUSSION: Our data provides an opportunity to investigate the molecular epidemiology of pre-elimination inland malaria populations, which exhibited lower selection pressure on invasion and immune evasion genes than neighbouring areas, but increased drug resistance in low transmission settings. Our results revealed that the inland population was severely fragmented with low relatedness among infections, despite a higher incidence of multiclonal infections, suggesting that superinfection or co-transmission events are rare in low-endemic circumstances. We identified selective signatures of resistance and found that the proportion of susceptible isolates fluctuated in response to the prohibition of specific drugs. This finding is consistent with the alterations in medication strategies during the malaria elimination campaign in inland China. Such findings could provide a genetic basis for future population studies, assessing changes in other pre-elimination countries.