Cargando…
Latent dirichlet allocation for double clustering (LDA-DC): discovering patients phenotypes and cell populations within a single Bayesian framework
BACKGROUND: Current clinical routines rely more and more on “omics” data such as flow cytometry data from host and microbiota. Cohorts variability in addition to patients’ heterogeneity and huge dimensions make it difficult to understand underlying structure of the data and decipher pathologies. Pat...
Autores principales: | Hachem, Elie-Julien El, Sokolovska, Nataliya, Soula, Hedi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948385/ https://www.ncbi.nlm.nih.gov/pubmed/36823548 http://dx.doi.org/10.1186/s12859-023-05177-4 |
Ejemplares similares
-
LDA filter: A Latent Dirichlet Allocation preprocess method for Weka
por: Celard, P., et al.
Publicado: (2020) -
Twenty-five Years of Research in Social Networks: Evolution of Topics between 1997 and 2021 Based on Latent Dirichlet Allocation (LDA)
por: Martínez-Comeche, Juan-Antonio
Publicado: (2023) -
Latent DIRICHLET allocation (LDA) based information modelling on BLOCKCHAIN technology: a review of trends and research patterns used in integration
por: Sharma, Chetan, et al.
Publicado: (2022) -
Results and Methodological Implications of the Digital Epidemiology of Prescription Drug References Among Twitter Users: Latent Dirichlet Allocation (LDA) Analyses
por: Parker, Maria A, et al.
Publicado: (2023) -
Discovering novel mutation signatures by latent Dirichlet allocation with variational Bayes inference
por: Matsutani, Taro, et al.
Publicado: (2019)