Cargando…

An Arsenal of Multiple Antimicrobial Resistance, Toxins, and Virulence Factors in Gram-Negative Bacterial Isolates from Food – A Formidable Combination!

BACKGROUND: Infectious diseases caused by pathogenic members of the family Enterobacteriaceae cause mortality and morbidity in humans. These are mediated mainly via toxins or virulence factors in combination with multiple antimicrobial resistance (MAR) against antimicrobials intended to treat infect...

Descripción completa

Detalles Bibliográficos
Autores principales: Alemu, Ashenafi, Girma, Selfu, Mariam, Solomon H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948636/
https://www.ncbi.nlm.nih.gov/pubmed/36845021
http://dx.doi.org/10.2147/IDR.S391072
_version_ 1784892825069944832
author Alemu, Ashenafi
Girma, Selfu
Mariam, Solomon H
author_facet Alemu, Ashenafi
Girma, Selfu
Mariam, Solomon H
author_sort Alemu, Ashenafi
collection PubMed
description BACKGROUND: Infectious diseases caused by pathogenic members of the family Enterobacteriaceae cause mortality and morbidity in humans. These are mediated mainly via toxins or virulence factors in combination with multiple antimicrobial resistance (MAR) against antimicrobials intended to treat infections. Resistance can be transferred to other bacteria, possibly also in association with other resistance determinants and/or virulence properties. Food-borne bacterial infections are one of the major causes of infections in humans. The level of scientific information about foodborne bacterial infections in Ethiopia is very limited at best. METHODS: Bacteria were isolated from commercial dairy foods. These were cultured in appropriate media for identification at the family level (Enterobacteriaceae) based on Gram-negative, catalase-positive, oxidase-negative, and urease-negative phenotypes, followed by testing for the presence of virulence factors and resistance determinants to various antimicrobial classes using phenotypic and molecular tests. RESULTS: Twenty Gram-negative bacteria isolated from the foods were found to be resistant to almost all antimicrobials belonging to the phenicol, aminoglycoside, fluoroquinolone, monobactam, and β-lactam classes. All of them were multiple-drug-resistant. The resistance to the β-lactams was due to the production of β-lactamases and were also mostly resistant to some of the β-lactam/β-lactamase inhibitor combinations. Some isolates also contained toxins. CONCLUSION: This small-scale study demonstrated the presence, in the isolates, of high levels of virulence factors and resistance to major antimicrobials that are in clinical use. Most treatment being empirical, there can be not only a high degree of treatment failure but also the likelihood for further development and dissemination of antimicrobial resistance. Since dairy foods are animal products, there is an urgent need to control animal-food-human transmission mechanisms, restrict antimicrobial use in animal agriculture, and improve clinical treatment from the usual empirical treatment to more targeted and effective treatment.
format Online
Article
Text
id pubmed-9948636
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Dove
record_format MEDLINE/PubMed
spelling pubmed-99486362023-02-24 An Arsenal of Multiple Antimicrobial Resistance, Toxins, and Virulence Factors in Gram-Negative Bacterial Isolates from Food – A Formidable Combination! Alemu, Ashenafi Girma, Selfu Mariam, Solomon H Infect Drug Resist Original Research BACKGROUND: Infectious diseases caused by pathogenic members of the family Enterobacteriaceae cause mortality and morbidity in humans. These are mediated mainly via toxins or virulence factors in combination with multiple antimicrobial resistance (MAR) against antimicrobials intended to treat infections. Resistance can be transferred to other bacteria, possibly also in association with other resistance determinants and/or virulence properties. Food-borne bacterial infections are one of the major causes of infections in humans. The level of scientific information about foodborne bacterial infections in Ethiopia is very limited at best. METHODS: Bacteria were isolated from commercial dairy foods. These were cultured in appropriate media for identification at the family level (Enterobacteriaceae) based on Gram-negative, catalase-positive, oxidase-negative, and urease-negative phenotypes, followed by testing for the presence of virulence factors and resistance determinants to various antimicrobial classes using phenotypic and molecular tests. RESULTS: Twenty Gram-negative bacteria isolated from the foods were found to be resistant to almost all antimicrobials belonging to the phenicol, aminoglycoside, fluoroquinolone, monobactam, and β-lactam classes. All of them were multiple-drug-resistant. The resistance to the β-lactams was due to the production of β-lactamases and were also mostly resistant to some of the β-lactam/β-lactamase inhibitor combinations. Some isolates also contained toxins. CONCLUSION: This small-scale study demonstrated the presence, in the isolates, of high levels of virulence factors and resistance to major antimicrobials that are in clinical use. Most treatment being empirical, there can be not only a high degree of treatment failure but also the likelihood for further development and dissemination of antimicrobial resistance. Since dairy foods are animal products, there is an urgent need to control animal-food-human transmission mechanisms, restrict antimicrobial use in animal agriculture, and improve clinical treatment from the usual empirical treatment to more targeted and effective treatment. Dove 2023-02-19 /pmc/articles/PMC9948636/ /pubmed/36845021 http://dx.doi.org/10.2147/IDR.S391072 Text en © 2023 Alemu et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
spellingShingle Original Research
Alemu, Ashenafi
Girma, Selfu
Mariam, Solomon H
An Arsenal of Multiple Antimicrobial Resistance, Toxins, and Virulence Factors in Gram-Negative Bacterial Isolates from Food – A Formidable Combination!
title An Arsenal of Multiple Antimicrobial Resistance, Toxins, and Virulence Factors in Gram-Negative Bacterial Isolates from Food – A Formidable Combination!
title_full An Arsenal of Multiple Antimicrobial Resistance, Toxins, and Virulence Factors in Gram-Negative Bacterial Isolates from Food – A Formidable Combination!
title_fullStr An Arsenal of Multiple Antimicrobial Resistance, Toxins, and Virulence Factors in Gram-Negative Bacterial Isolates from Food – A Formidable Combination!
title_full_unstemmed An Arsenal of Multiple Antimicrobial Resistance, Toxins, and Virulence Factors in Gram-Negative Bacterial Isolates from Food – A Formidable Combination!
title_short An Arsenal of Multiple Antimicrobial Resistance, Toxins, and Virulence Factors in Gram-Negative Bacterial Isolates from Food – A Formidable Combination!
title_sort arsenal of multiple antimicrobial resistance, toxins, and virulence factors in gram-negative bacterial isolates from food – a formidable combination!
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948636/
https://www.ncbi.nlm.nih.gov/pubmed/36845021
http://dx.doi.org/10.2147/IDR.S391072
work_keys_str_mv AT alemuashenafi anarsenalofmultipleantimicrobialresistancetoxinsandvirulencefactorsingramnegativebacterialisolatesfromfoodaformidablecombination
AT girmaselfu anarsenalofmultipleantimicrobialresistancetoxinsandvirulencefactorsingramnegativebacterialisolatesfromfoodaformidablecombination
AT mariamsolomonh anarsenalofmultipleantimicrobialresistancetoxinsandvirulencefactorsingramnegativebacterialisolatesfromfoodaformidablecombination
AT alemuashenafi arsenalofmultipleantimicrobialresistancetoxinsandvirulencefactorsingramnegativebacterialisolatesfromfoodaformidablecombination
AT girmaselfu arsenalofmultipleantimicrobialresistancetoxinsandvirulencefactorsingramnegativebacterialisolatesfromfoodaformidablecombination
AT mariamsolomonh arsenalofmultipleantimicrobialresistancetoxinsandvirulencefactorsingramnegativebacterialisolatesfromfoodaformidablecombination