Cargando…
Investigation of biases in convolutional neural networks for semantic segmentation using performance sensitivity analysis
The application of deep neural networks for segmentation in medical imaging has gained substantial interest in recent years. In many cases, this variant of machine learning has been shown to outperform other conventional segmentation approaches. However, little is known about its general applicabili...
Autores principales: | Güllmar, Daniel, Jacobsen, Nina, Deistung, Andreas, Timmann, Dagmar, Ropele, Stefan, Reichenbach, Jürgen R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948839/ https://www.ncbi.nlm.nih.gov/pubmed/35016819 http://dx.doi.org/10.1016/j.zemedi.2021.11.004 |
Ejemplares similares
-
Magnetic susceptibility anisotropy in normal appearing white matter in multiple sclerosis from single-orientation acquisition
por: Sibgatulin, Renat, et al.
Publicado: (2022) -
Investigation of Deep-Learning-Driven Identification of Multiple Sclerosis Patients Based on Susceptibility-Weighted Images Using Relevance Analysis
por: Lopatina, Alina, et al.
Publicado: (2020) -
Investigating Semantic Augmentation in Virtual Environments for Image Segmentation Using Convolutional Neural Networks
por: Ganter, Joshua, et al.
Publicado: (2021) -
High-Resolution MR Imaging of the Human Brainstem In vivo at 7 Tesla
por: Deistung, Andreas, et al.
Publicado: (2013) -
Convolutional Neural Networks for Semantic Segmentation as a Tool for Multiclass Face Analysis in Thermal Infrared
por: Müller, David, et al.
Publicado: (2021)