Cargando…
Commissioning and quality assurance of a novel solution for respiratory-gated PBS proton therapy based on optical tracking of surface markers
We present the commissioning and quality assurance of our clinical protocol for respiratory gating in pencil beam scanning proton therapy for cancer patients with moving targets. In a novel approach, optical tracking has been integrated in the therapy workflow and used to monitor respiratory motion...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948868/ https://www.ncbi.nlm.nih.gov/pubmed/32830006 http://dx.doi.org/10.1016/j.zemedi.2020.07.001 |
_version_ | 1784892870888521728 |
---|---|
author | Fattori, Giovanni Hrbacek, Jan Regele, Harald Bula, Christian Mayor, Alexandre Danuser, Stefan Oxley, David C. Rechsteiner, Urs Grossmann, Martin Via, Riccardo Böhlen, Till T. Bolsi, Alessandra Walser, Marc Togno, Michele Colvill, Emma Lempen, Daniel Weber, Damien C. Lomax, Antony J. Safai, Sairos |
author_facet | Fattori, Giovanni Hrbacek, Jan Regele, Harald Bula, Christian Mayor, Alexandre Danuser, Stefan Oxley, David C. Rechsteiner, Urs Grossmann, Martin Via, Riccardo Böhlen, Till T. Bolsi, Alessandra Walser, Marc Togno, Michele Colvill, Emma Lempen, Daniel Weber, Damien C. Lomax, Antony J. Safai, Sairos |
author_sort | Fattori, Giovanni |
collection | PubMed |
description | We present the commissioning and quality assurance of our clinical protocol for respiratory gating in pencil beam scanning proton therapy for cancer patients with moving targets. In a novel approach, optical tracking has been integrated in the therapy workflow and used to monitor respiratory motion from multiple surrogates, applied on the patients’ chest. The gating system was tested under a variety of experimental conditions, specific to proton therapy, to evaluate reaction time and reproducibility of dose delivery control. The system proved to be precise in the application of beam gating and allowed the mitigation of dose distortions even for large (1.4 cm) motion amplitudes, provided that adequate treatment windows were selected. The total delivered dose was not affected by the use of gating, with measured integral error within 0.15 cGy. Analysing high-resolution images of proton transmission, we observed negligible discrepancies in the geometric location of the dose as a function of the treatment window, with gamma pass rate greater than 95% (2%/2 mm) compared to stationary conditions. Similarly, pass rate for the latter metric at the 3%/3 mm level was observed above 97% for clinical treatment fields, limiting residual movement to 3 mm at end-exhale. These results were confirmed in realistic clinical conditions using an anthropomorphic breathing phantom, reporting a similarly high 3%/3 mm pass rate, above 98% and 94%, for regular and irregular breathing, respectively. Finally, early results from periodic QA tests of the optical tracker have shown a reliable system, with small variance observed in static and dynamic measurements. |
format | Online Article Text |
id | pubmed-9948868 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-99488682023-02-23 Commissioning and quality assurance of a novel solution for respiratory-gated PBS proton therapy based on optical tracking of surface markers Fattori, Giovanni Hrbacek, Jan Regele, Harald Bula, Christian Mayor, Alexandre Danuser, Stefan Oxley, David C. Rechsteiner, Urs Grossmann, Martin Via, Riccardo Böhlen, Till T. Bolsi, Alessandra Walser, Marc Togno, Michele Colvill, Emma Lempen, Daniel Weber, Damien C. Lomax, Antony J. Safai, Sairos Z Med Phys Original Paper We present the commissioning and quality assurance of our clinical protocol for respiratory gating in pencil beam scanning proton therapy for cancer patients with moving targets. In a novel approach, optical tracking has been integrated in the therapy workflow and used to monitor respiratory motion from multiple surrogates, applied on the patients’ chest. The gating system was tested under a variety of experimental conditions, specific to proton therapy, to evaluate reaction time and reproducibility of dose delivery control. The system proved to be precise in the application of beam gating and allowed the mitigation of dose distortions even for large (1.4 cm) motion amplitudes, provided that adequate treatment windows were selected. The total delivered dose was not affected by the use of gating, with measured integral error within 0.15 cGy. Analysing high-resolution images of proton transmission, we observed negligible discrepancies in the geometric location of the dose as a function of the treatment window, with gamma pass rate greater than 95% (2%/2 mm) compared to stationary conditions. Similarly, pass rate for the latter metric at the 3%/3 mm level was observed above 97% for clinical treatment fields, limiting residual movement to 3 mm at end-exhale. These results were confirmed in realistic clinical conditions using an anthropomorphic breathing phantom, reporting a similarly high 3%/3 mm pass rate, above 98% and 94%, for regular and irregular breathing, respectively. Finally, early results from periodic QA tests of the optical tracker have shown a reliable system, with small variance observed in static and dynamic measurements. Elsevier 2020-08-20 /pmc/articles/PMC9948868/ /pubmed/32830006 http://dx.doi.org/10.1016/j.zemedi.2020.07.001 Text en © 2020 Published by. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Paper Fattori, Giovanni Hrbacek, Jan Regele, Harald Bula, Christian Mayor, Alexandre Danuser, Stefan Oxley, David C. Rechsteiner, Urs Grossmann, Martin Via, Riccardo Böhlen, Till T. Bolsi, Alessandra Walser, Marc Togno, Michele Colvill, Emma Lempen, Daniel Weber, Damien C. Lomax, Antony J. Safai, Sairos Commissioning and quality assurance of a novel solution for respiratory-gated PBS proton therapy based on optical tracking of surface markers |
title | Commissioning and quality assurance of a novel solution for respiratory-gated PBS proton therapy based on optical tracking of surface markers |
title_full | Commissioning and quality assurance of a novel solution for respiratory-gated PBS proton therapy based on optical tracking of surface markers |
title_fullStr | Commissioning and quality assurance of a novel solution for respiratory-gated PBS proton therapy based on optical tracking of surface markers |
title_full_unstemmed | Commissioning and quality assurance of a novel solution for respiratory-gated PBS proton therapy based on optical tracking of surface markers |
title_short | Commissioning and quality assurance of a novel solution for respiratory-gated PBS proton therapy based on optical tracking of surface markers |
title_sort | commissioning and quality assurance of a novel solution for respiratory-gated pbs proton therapy based on optical tracking of surface markers |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948868/ https://www.ncbi.nlm.nih.gov/pubmed/32830006 http://dx.doi.org/10.1016/j.zemedi.2020.07.001 |
work_keys_str_mv | AT fattorigiovanni commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers AT hrbacekjan commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers AT regeleharald commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers AT bulachristian commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers AT mayoralexandre commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers AT danuserstefan commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers AT oxleydavidc commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers AT rechsteinerurs commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers AT grossmannmartin commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers AT viariccardo commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers AT bohlentillt commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers AT bolsialessandra commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers AT walsermarc commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers AT tognomichele commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers AT colvillemma commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers AT lempendaniel commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers AT weberdamienc commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers AT lomaxantonyj commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers AT safaisairos commissioningandqualityassuranceofanovelsolutionforrespiratorygatedpbsprotontherapybasedonopticaltrackingofsurfacemarkers |