Cargando…
Can Generative Adversarial Networks help to overcome the limited data problem in segmentation?
PURPOSE: For image translational tasks, the application of deep learning methods showed that Generative Adversarial Network (GAN) architectures outperform the traditional U-Net networks, when using the same training data size. This study investigates whether this performance boost can also be expect...
Autores principales: | Heilemann, Gerd, Matthewman, Mark, Kuess, Peter, Goldner, Gregor, Widder, Joachim, Georg, Dietmar, Zimmermann, Lukas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948880/ https://www.ncbi.nlm.nih.gov/pubmed/34930685 http://dx.doi.org/10.1016/j.zemedi.2021.11.006 |
Ejemplares similares
-
On the sensitivity of PROMs during breast radiotherapy
por: Heilemann, Gerd, et al.
Publicado: (2022) -
Technical Note: Dose prediction for radiation therapy using feature‐based losses and One Cycle Learning
por: Zimmermann, Lukas, et al.
Publicado: (2021) -
Accelerating and improving radiochromic film calibration by utilizing the dose ratio in photon and proton beams
por: Resch, Andreas F., et al.
Publicado: (2022) -
Postoperative radiotherapy for prostate cancer: Morbidity of local-only or local-plus-pelvic radiotherapy
por: Waldstein, Cora, et al.
Publicado: (2017) -
Possibilities and challenges when using synthetic computed tomography in an adaptive carbon-ion treatment workflow
por: Knäusl, Barbara, et al.
Publicado: (2022)