Cargando…
Unraveling Spatial Gene Associations with SEAGAL: a Python Package for Spatial Transcriptomics Data Analysis and Visualization
SUMMARY: In the era where transcriptome profiling moves towards single-cell and spatial resolutions, the traditional co-expression analysis lacks the power to fully utilize such rich information to unravel spatial gene associations. Here we present a Python package called Spatial Enrichment Analysis...
Autores principales: | Wang, Linhua, Liu, Chaozhong, Liu, Zhandong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948987/ https://www.ncbi.nlm.nih.gov/pubmed/36824948 http://dx.doi.org/10.1101/2023.02.13.528331 |
Ejemplares similares
-
Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization
por: Wang, Linhua, et al.
Publicado: (2023) -
Region-specific denoising identifies spatial co-expression patterns and intra-tissue heterogeneity in spatially resolved transcriptomics data
por: Wang, Linhua, et al.
Publicado: (2022) -
spatialLIBD: an R/Bioconductor package to visualize spatially-resolved transcriptomics data
por: Pardo, Brenda, et al.
Publicado: (2022) -
scGREAT: Graph-based regulatory element analysis tool for single-cell multi-omics data
por: Liu, Chaozhong, et al.
Publicado: (2023) -
Single-cell multi-omics integration for unpaired data by a siamese network with graph-based contrastive loss
por: Liu, Chaozhong, et al.
Publicado: (2023)