Cargando…
Unified Topological Inference for Brain Networks in Temporal Lobe Epilepsy Using the Wasserstein Distance
Persistent homology offers a powerful tool for extracting hidden topological signals from brain networks. It captures the evolution of topological structures across multiple scales, known as filtrations, thereby revealing topological features that persist over these scales. These features are summar...
Autores principales: | Chung, Moo K., Ramos, Camille Garcia, De Paiva, Felipe Branco, Mathis, Jedidiah, Prabharakaren, Vivek, Nair, Veena A., Meyerand, Elizabeth, Hermann, Bruce P., Binder, Jeffrey R., Struck, Aaron F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949148/ https://www.ncbi.nlm.nih.gov/pubmed/36824424 |
Ejemplares similares
-
Network phenotypes and their clinical significance in temporal lobe epilepsy using machine learning applications to morphological and functional graph theory metrics
por: Garcia-Ramos, Camille, et al.
Publicado: (2022) -
The presence, nature and network characteristics of behavioural phenotypes in temporal lobe epilepsy
por: Struck, Aaron F, et al.
Publicado: (2023) -
Correcting nuisance variation using Wasserstein distance
por: Tabak, Gil, et al.
Publicado: (2020) -
Proxying credit curves via Wasserstein distances
por: Michielon, Matteo, et al.
Publicado: (2022) -
T1−/T2‐weighted ratio reveals no alterations to gray matter myelination in temporal lobe epilepsy
por: Denis, Colin, et al.
Publicado: (2023)