Cargando…
Human atlastins are sufficient to drive the fusion of liposomes with a physiological lipid composition
The dynamin-like GTPase atlastin is believed to be the minimal machinery required for homotypic endoplasmic reticulum (ER) membrane fusion, mainly because Drosophila atlastin is sufficient to drive liposome fusion. However, it remains unclear whether mammalian atlastins, including the three human at...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949273/ https://www.ncbi.nlm.nih.gov/pubmed/36757370 http://dx.doi.org/10.1083/jcb.202109090 |
_version_ | 1784892941329760256 |
---|---|
author | Jang, Eunhong Moon, Yeojin Yoon, So Young Diaz, Joyce Anne R. Lee, Miriam Ko, Naho Park, Jongseo Eom, Soo Hyun Lee, Changwook Jun, Youngsoo |
author_facet | Jang, Eunhong Moon, Yeojin Yoon, So Young Diaz, Joyce Anne R. Lee, Miriam Ko, Naho Park, Jongseo Eom, Soo Hyun Lee, Changwook Jun, Youngsoo |
author_sort | Jang, Eunhong |
collection | PubMed |
description | The dynamin-like GTPase atlastin is believed to be the minimal machinery required for homotypic endoplasmic reticulum (ER) membrane fusion, mainly because Drosophila atlastin is sufficient to drive liposome fusion. However, it remains unclear whether mammalian atlastins, including the three human atlastins, are sufficient to induce liposome fusion, raising doubts about their major roles in mammalian cells. Here, we show that all human atlastins are sufficient to induce fusion when reconstituted into liposomes with a lipid composition mimicking that of the ER. Although the fusogenic activity of ATL1, which is predominantly expressed in neuronal cells, was weaker than that of ATL2 or ATL3, the addition of M1-spastin, a neuron-specific factor, markedly increased ATL1-mediated liposome fusion. Although we observed efficient fusion between ER microsomes isolated from cultured, non-neuronal cells that predominantly express ATL2-1, an autoinhibited isoform of ATL2, ATL2-1 failed to support liposome fusion by itself as reported previously, indicating that cellular factors enable ATL2-1 to mediate ER fusion in vivo. |
format | Online Article Text |
id | pubmed-9949273 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-99492732023-08-09 Human atlastins are sufficient to drive the fusion of liposomes with a physiological lipid composition Jang, Eunhong Moon, Yeojin Yoon, So Young Diaz, Joyce Anne R. Lee, Miriam Ko, Naho Park, Jongseo Eom, Soo Hyun Lee, Changwook Jun, Youngsoo J Cell Biol Article The dynamin-like GTPase atlastin is believed to be the minimal machinery required for homotypic endoplasmic reticulum (ER) membrane fusion, mainly because Drosophila atlastin is sufficient to drive liposome fusion. However, it remains unclear whether mammalian atlastins, including the three human atlastins, are sufficient to induce liposome fusion, raising doubts about their major roles in mammalian cells. Here, we show that all human atlastins are sufficient to induce fusion when reconstituted into liposomes with a lipid composition mimicking that of the ER. Although the fusogenic activity of ATL1, which is predominantly expressed in neuronal cells, was weaker than that of ATL2 or ATL3, the addition of M1-spastin, a neuron-specific factor, markedly increased ATL1-mediated liposome fusion. Although we observed efficient fusion between ER microsomes isolated from cultured, non-neuronal cells that predominantly express ATL2-1, an autoinhibited isoform of ATL2, ATL2-1 failed to support liposome fusion by itself as reported previously, indicating that cellular factors enable ATL2-1 to mediate ER fusion in vivo. Rockefeller University Press 2023-02-09 /pmc/articles/PMC9949273/ /pubmed/36757370 http://dx.doi.org/10.1083/jcb.202109090 Text en © 2023 Jang et al. https://creativecommons.org/licenses/by-nc-sa/4.0/http://www.rupress.org/terms/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Jang, Eunhong Moon, Yeojin Yoon, So Young Diaz, Joyce Anne R. Lee, Miriam Ko, Naho Park, Jongseo Eom, Soo Hyun Lee, Changwook Jun, Youngsoo Human atlastins are sufficient to drive the fusion of liposomes with a physiological lipid composition |
title | Human atlastins are sufficient to drive the fusion of liposomes with a physiological lipid composition |
title_full | Human atlastins are sufficient to drive the fusion of liposomes with a physiological lipid composition |
title_fullStr | Human atlastins are sufficient to drive the fusion of liposomes with a physiological lipid composition |
title_full_unstemmed | Human atlastins are sufficient to drive the fusion of liposomes with a physiological lipid composition |
title_short | Human atlastins are sufficient to drive the fusion of liposomes with a physiological lipid composition |
title_sort | human atlastins are sufficient to drive the fusion of liposomes with a physiological lipid composition |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949273/ https://www.ncbi.nlm.nih.gov/pubmed/36757370 http://dx.doi.org/10.1083/jcb.202109090 |
work_keys_str_mv | AT jangeunhong humanatlastinsaresufficienttodrivethefusionofliposomeswithaphysiologicallipidcomposition AT moonyeojin humanatlastinsaresufficienttodrivethefusionofliposomeswithaphysiologicallipidcomposition AT yoonsoyoung humanatlastinsaresufficienttodrivethefusionofliposomeswithaphysiologicallipidcomposition AT diazjoyceanner humanatlastinsaresufficienttodrivethefusionofliposomeswithaphysiologicallipidcomposition AT leemiriam humanatlastinsaresufficienttodrivethefusionofliposomeswithaphysiologicallipidcomposition AT konaho humanatlastinsaresufficienttodrivethefusionofliposomeswithaphysiologicallipidcomposition AT parkjongseo humanatlastinsaresufficienttodrivethefusionofliposomeswithaphysiologicallipidcomposition AT eomsoohyun humanatlastinsaresufficienttodrivethefusionofliposomeswithaphysiologicallipidcomposition AT leechangwook humanatlastinsaresufficienttodrivethefusionofliposomeswithaphysiologicallipidcomposition AT junyoungsoo humanatlastinsaresufficienttodrivethefusionofliposomeswithaphysiologicallipidcomposition |