Cargando…
Increasing transparency in machine learning through bootstrap simulation and shapely additive explanations
Machine learning methods are widely used within the medical field. However, the reliability and efficacy of these models is difficult to assess, making it difficult for researchers to identify which machine-learning model to apply to their dataset. We assessed whether variance calculations of model...
Autores principales: | Huang, Alexander A., Huang, Samuel Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949629/ https://www.ncbi.nlm.nih.gov/pubmed/36821544 http://dx.doi.org/10.1371/journal.pone.0281922 |
Ejemplares similares
-
Exploring Depression and Nutritional Covariates Amongst US Adults using Shapely Additive Explanations
por: Huang, Alexander A., et al.
Publicado: (2023) -
Justificatory explanations in machine learning: for increased transparency through documenting how key concepts drive and underpin design and engineering decisions
por: Casacuberta, David, et al.
Publicado: (2022) -
Learning Bootstrap
por: Shenoy, Aravind, et al.
Publicado: (2014) -
Shapley-Additive-Explanations-Based Factor Analysis for Dengue Severity Prediction using Machine Learning
por: Chowdhury, Shihab Uddin, et al.
Publicado: (2022) -
Leveraging explanations in interactive machine learning: An overview
por: Teso, Stefano, et al.
Publicado: (2023)