Cargando…
Developed network between taxoid and phenylpropanoid pathways in Cryptosporiopsis tarraconensis, taxan-producing endophytic fungus by Debiased Sparse Partial Correlation (DSPC) algorithm
Although bioproduction of Paclitaxel by endophytic fungi is highly considered as an alternative promising source, but its yield is usually very low in comparison with other taxoids. Different strategies i.e., chemical and physical elicitations have been developed in order to overcome the shortage of...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949632/ https://www.ncbi.nlm.nih.gov/pubmed/36821563 http://dx.doi.org/10.1371/journal.pone.0282010 |
_version_ | 1784892986265436160 |
---|---|
author | Mohammadi Ballakuti, Narjes Ghanati, Faezeh |
author_facet | Mohammadi Ballakuti, Narjes Ghanati, Faezeh |
author_sort | Mohammadi Ballakuti, Narjes |
collection | PubMed |
description | Although bioproduction of Paclitaxel by endophytic fungi is highly considered as an alternative promising source, but its yield is usually very low in comparison with other taxoids. Different strategies i.e., chemical and physical elicitations have been developed in order to overcome the shortage of Paclitaxel production. Paclitaxel biosynthesis is started with terpenoid pathway followed by phenylpropanoid metabolism where a benzoylphenylisoserine moiety is attached to C13 of baccatin III skeleton. This point which is catalyzed by the function of PAM seems to be a bottleneck that limits the rate of Paclitaxel production. Whether phenylpropanoids pathway regulates the taxanes biosynthesis in Cryptosporiopsis tarraconensis endophytic fungus elicited with benzoic acid (BA) was hypothesized in the present paper. The involvement of certain signal molecules and key enzymes of terpenoid and phenylpropanoid metabolism were investigated. According to the results, application of BA promoted a signaling pathway which was started with increase of H2O2 and ABA and continued by increase of NO and MJ, and finally resulted in increase of both phenylpropanoids and taxanes. However, again the rate of Paclitaxel production was lower than other taxoids, and the latter was much lower than phenolics. Therefore, supplying benzoic acid provided the precursor for the common taxan ring production. It is unlikely that Paclitaxel production is merely controlled by side chain production stage. It is more likely that in C. tarraconensis endophytic fungus, similar to Taxus sp., the competition between phenylpropanoid and taxoid pathways for substrate ended in favor of the former. The interaction network which was constructed based on DSPC algorithm confirmed that most compounds with close proximity have shared metabolic pathway relationships. Therefore, it is unlikely that the feeding with a given precursor directly result in increase of a desired metabolite which is composed of different merits. |
format | Online Article Text |
id | pubmed-9949632 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-99496322023-02-24 Developed network between taxoid and phenylpropanoid pathways in Cryptosporiopsis tarraconensis, taxan-producing endophytic fungus by Debiased Sparse Partial Correlation (DSPC) algorithm Mohammadi Ballakuti, Narjes Ghanati, Faezeh PLoS One Research Article Although bioproduction of Paclitaxel by endophytic fungi is highly considered as an alternative promising source, but its yield is usually very low in comparison with other taxoids. Different strategies i.e., chemical and physical elicitations have been developed in order to overcome the shortage of Paclitaxel production. Paclitaxel biosynthesis is started with terpenoid pathway followed by phenylpropanoid metabolism where a benzoylphenylisoserine moiety is attached to C13 of baccatin III skeleton. This point which is catalyzed by the function of PAM seems to be a bottleneck that limits the rate of Paclitaxel production. Whether phenylpropanoids pathway regulates the taxanes biosynthesis in Cryptosporiopsis tarraconensis endophytic fungus elicited with benzoic acid (BA) was hypothesized in the present paper. The involvement of certain signal molecules and key enzymes of terpenoid and phenylpropanoid metabolism were investigated. According to the results, application of BA promoted a signaling pathway which was started with increase of H2O2 and ABA and continued by increase of NO and MJ, and finally resulted in increase of both phenylpropanoids and taxanes. However, again the rate of Paclitaxel production was lower than other taxoids, and the latter was much lower than phenolics. Therefore, supplying benzoic acid provided the precursor for the common taxan ring production. It is unlikely that Paclitaxel production is merely controlled by side chain production stage. It is more likely that in C. tarraconensis endophytic fungus, similar to Taxus sp., the competition between phenylpropanoid and taxoid pathways for substrate ended in favor of the former. The interaction network which was constructed based on DSPC algorithm confirmed that most compounds with close proximity have shared metabolic pathway relationships. Therefore, it is unlikely that the feeding with a given precursor directly result in increase of a desired metabolite which is composed of different merits. Public Library of Science 2023-02-23 /pmc/articles/PMC9949632/ /pubmed/36821563 http://dx.doi.org/10.1371/journal.pone.0282010 Text en © 2023 Mohammadi Ballakuti, Ghanati https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Mohammadi Ballakuti, Narjes Ghanati, Faezeh Developed network between taxoid and phenylpropanoid pathways in Cryptosporiopsis tarraconensis, taxan-producing endophytic fungus by Debiased Sparse Partial Correlation (DSPC) algorithm |
title | Developed network between taxoid and phenylpropanoid pathways in Cryptosporiopsis tarraconensis, taxan-producing endophytic fungus by Debiased Sparse Partial Correlation (DSPC) algorithm |
title_full | Developed network between taxoid and phenylpropanoid pathways in Cryptosporiopsis tarraconensis, taxan-producing endophytic fungus by Debiased Sparse Partial Correlation (DSPC) algorithm |
title_fullStr | Developed network between taxoid and phenylpropanoid pathways in Cryptosporiopsis tarraconensis, taxan-producing endophytic fungus by Debiased Sparse Partial Correlation (DSPC) algorithm |
title_full_unstemmed | Developed network between taxoid and phenylpropanoid pathways in Cryptosporiopsis tarraconensis, taxan-producing endophytic fungus by Debiased Sparse Partial Correlation (DSPC) algorithm |
title_short | Developed network between taxoid and phenylpropanoid pathways in Cryptosporiopsis tarraconensis, taxan-producing endophytic fungus by Debiased Sparse Partial Correlation (DSPC) algorithm |
title_sort | developed network between taxoid and phenylpropanoid pathways in cryptosporiopsis tarraconensis, taxan-producing endophytic fungus by debiased sparse partial correlation (dspc) algorithm |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949632/ https://www.ncbi.nlm.nih.gov/pubmed/36821563 http://dx.doi.org/10.1371/journal.pone.0282010 |
work_keys_str_mv | AT mohammadiballakutinarjes developednetworkbetweentaxoidandphenylpropanoidpathwaysincryptosporiopsistarraconensistaxanproducingendophyticfungusbydebiasedsparsepartialcorrelationdspcalgorithm AT ghanatifaezeh developednetworkbetweentaxoidandphenylpropanoidpathwaysincryptosporiopsistarraconensistaxanproducingendophyticfungusbydebiasedsparsepartialcorrelationdspcalgorithm |