Cargando…
Evolutionary dynamics of hyperbolic language
Models of evolution of simple languages have typically assumed full alignment of the speaker and listeners interests, with perfect understanding representing the optimal outcome for both parties. In more realistic settings, communicating individuals will often desire different outcomes from one anot...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949666/ https://www.ncbi.nlm.nih.gov/pubmed/36821533 http://dx.doi.org/10.1371/journal.pcbi.1010872 |
Sumario: | Models of evolution of simple languages have typically assumed full alignment of the speaker and listeners interests, with perfect understanding representing the optimal outcome for both parties. In more realistic settings, communicating individuals will often desire different outcomes from one another. Previous work has shown that misalignment of speaker-listener interests reduces the maximum informativeness among Nash-equilibrium languages, and that multiple equilibrium languages (with different degrees of informativeness) are supported. We study the stochastic evolutionary dynamics of signaling games in which the alignment of speaker-listener interests can vary. We find that increased misalignment of speaker-listener interests is associated with a decrease in information transmission. Moreover, the most common languages to evolve are typically the most informative languages supportable as static Nash equilibria, suggesting a solution to the ‘equilibrium selection problem’. In addition, our dynamics reveal the mechanism by which less informative languages evolve: words that previously signaled intense states come to be used hyperbolically for less intense states, with listeners’ interpretation of these newly-ambiguous words evolving downward in response. We ground our results in linguistic data on intensifiers such as so and very, words which have unique dynamics—with constant recycling and innovation that match our theoretical results well. |
---|