Cargando…
Skeletal dysplasia-causing TRPV4 mutations suppress the hypertrophic differentiation of human iPSC-derived chondrocytes
Mutations in the TRPV4 ion channel can lead to a range of skeletal dysplasias. However, the mechanisms by which TRPV4 mutations lead to distinct disease severity remain unknown. Here, we use CRISPR-Cas9-edited human-induced pluripotent stem cells (hiPSCs) harboring either the mild V620I or lethal T8...
Autores principales: | Dicks, Amanda R, Maksaev, Grigory I, Harissa, Zainab, Savadipour, Alireza, Tang, Ruhang, Steward, Nancy, Liedtke, Wolfgang, Nichols, Colin G, Wu, Chia-Lung, Guilak, Farshid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949800/ https://www.ncbi.nlm.nih.gov/pubmed/36810131 http://dx.doi.org/10.7554/eLife.71154 |
Ejemplares similares
-
Long non-coding RNA GRASLND enhances chondrogenesis via suppression of the interferon type II signaling pathway
por: Huynh, Nguyen PT, et al.
Publicado: (2020) -
Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes
por: Balboa, Diego, et al.
Publicado: (2018) -
GSK3 inhibition rescues growth and telomere dysfunction in dyskeratosis congenita iPSC-derived type II alveolar epithelial cells
por: Fernandez, Rafael Jesus, et al.
Publicado: (2022) -
Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis
por: Wu, Chia-Lung, et al.
Publicado: (2021) -
Prospective isolation of chondroprogenitors from human iPSCs based on cell surface markers identified using a CRISPR-Cas9-generated reporter
por: Dicks, Amanda, et al.
Publicado: (2020)