Cargando…
Thermal Change Affects Flexural and Thermal Properties of Fused Deposition Modeling Poly(Lactic Acid) and Compression Molding Poly(Methyl Methacrylate)
Objective Polylactic acid (PLA) is one of the most widely used materials in three-dimensional (3D) printing technology due to its multiple advantages such as biocompatibility and biodegradable. However, there is still a lack of study on 3D printing PLA for use as a denture base material. The goal o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Thieme Medical and Scientific Publishers Pvt. Ltd.
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949932/ https://www.ncbi.nlm.nih.gov/pubmed/35279819 http://dx.doi.org/10.1055/s-0042-1743148 |
_version_ | 1784893053557800960 |
---|---|
author | Charasseangpaisarn, Taksid Wiwatwarrapan, Chairat Srimaneepong, Viritpon |
author_facet | Charasseangpaisarn, Taksid Wiwatwarrapan, Chairat Srimaneepong, Viritpon |
author_sort | Charasseangpaisarn, Taksid |
collection | PubMed |
description | Objective Polylactic acid (PLA) is one of the most widely used materials in three-dimensional (3D) printing technology due to its multiple advantages such as biocompatibility and biodegradable. However, there is still a lack of study on 3D printing PLA for use as a denture base material. The goal of this study was to compare 3D printing PLA to traditional poly(methyl methacrylate) (PMMA) as a denture basis. Materials and Methods The PMMA (M) and PLA (L) specimens were fabricated by compression molding, and fuse deposition modeling technique, respectively. Each specimen group was divided into three different temperature groups of 25°C (25), 37°C (37), and 55°C (55). The glass transition temperature (T (g) ) of raw materials and specimen was investigated using differential scanning calorimetry. The heat deflection temperature (HDT) of each material was also observed. Statistical Analysis The data of flexural strength and flexural modulus were analyzed with two-way analysis of variance, and Tukey honestly significant difference. The T (g) and HDT data, on the other hand, were descriptively analyzed. Results The results showed that PLA had lower flexural strength than PMMA in all temperature conditions, while the PMMA 25°C (M25) and PMMA 37°C (M37) obtained the highest mean values. PLA 25°C (L25) and PLA 37°C (L37) had significant higher flexural modulus than the other groups. However, the flexural properties of L55 could not be observed, which may be explained by T (g) and HDT of PLA. Conclusion PLA only meets the flexural modulus requirement, although it was greater than flexural modulus of PMMA. On the other hand, PMMA can meet both good flexural strength and modulus requirement. However, increase in temperature could reduce flexural strength and flexural modulus of PMMA and PLA. |
format | Online Article Text |
id | pubmed-9949932 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Thieme Medical and Scientific Publishers Pvt. Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-99499322023-02-24 Thermal Change Affects Flexural and Thermal Properties of Fused Deposition Modeling Poly(Lactic Acid) and Compression Molding Poly(Methyl Methacrylate) Charasseangpaisarn, Taksid Wiwatwarrapan, Chairat Srimaneepong, Viritpon Eur J Dent Objective Polylactic acid (PLA) is one of the most widely used materials in three-dimensional (3D) printing technology due to its multiple advantages such as biocompatibility and biodegradable. However, there is still a lack of study on 3D printing PLA for use as a denture base material. The goal of this study was to compare 3D printing PLA to traditional poly(methyl methacrylate) (PMMA) as a denture basis. Materials and Methods The PMMA (M) and PLA (L) specimens were fabricated by compression molding, and fuse deposition modeling technique, respectively. Each specimen group was divided into three different temperature groups of 25°C (25), 37°C (37), and 55°C (55). The glass transition temperature (T (g) ) of raw materials and specimen was investigated using differential scanning calorimetry. The heat deflection temperature (HDT) of each material was also observed. Statistical Analysis The data of flexural strength and flexural modulus were analyzed with two-way analysis of variance, and Tukey honestly significant difference. The T (g) and HDT data, on the other hand, were descriptively analyzed. Results The results showed that PLA had lower flexural strength than PMMA in all temperature conditions, while the PMMA 25°C (M25) and PMMA 37°C (M37) obtained the highest mean values. PLA 25°C (L25) and PLA 37°C (L37) had significant higher flexural modulus than the other groups. However, the flexural properties of L55 could not be observed, which may be explained by T (g) and HDT of PLA. Conclusion PLA only meets the flexural modulus requirement, although it was greater than flexural modulus of PMMA. On the other hand, PMMA can meet both good flexural strength and modulus requirement. However, increase in temperature could reduce flexural strength and flexural modulus of PMMA and PLA. Thieme Medical and Scientific Publishers Pvt. Ltd. 2022-03-13 /pmc/articles/PMC9949932/ /pubmed/35279819 http://dx.doi.org/10.1055/s-0042-1743148 Text en The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. ( https://creativecommons.org/licenses/by/4.0/ ) https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Charasseangpaisarn, Taksid Wiwatwarrapan, Chairat Srimaneepong, Viritpon Thermal Change Affects Flexural and Thermal Properties of Fused Deposition Modeling Poly(Lactic Acid) and Compression Molding Poly(Methyl Methacrylate) |
title | Thermal Change Affects Flexural and Thermal Properties of Fused Deposition Modeling Poly(Lactic Acid) and Compression Molding Poly(Methyl Methacrylate) |
title_full | Thermal Change Affects Flexural and Thermal Properties of Fused Deposition Modeling Poly(Lactic Acid) and Compression Molding Poly(Methyl Methacrylate) |
title_fullStr | Thermal Change Affects Flexural and Thermal Properties of Fused Deposition Modeling Poly(Lactic Acid) and Compression Molding Poly(Methyl Methacrylate) |
title_full_unstemmed | Thermal Change Affects Flexural and Thermal Properties of Fused Deposition Modeling Poly(Lactic Acid) and Compression Molding Poly(Methyl Methacrylate) |
title_short | Thermal Change Affects Flexural and Thermal Properties of Fused Deposition Modeling Poly(Lactic Acid) and Compression Molding Poly(Methyl Methacrylate) |
title_sort | thermal change affects flexural and thermal properties of fused deposition modeling poly(lactic acid) and compression molding poly(methyl methacrylate) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949932/ https://www.ncbi.nlm.nih.gov/pubmed/35279819 http://dx.doi.org/10.1055/s-0042-1743148 |
work_keys_str_mv | AT charasseangpaisarntaksid thermalchangeaffectsflexuralandthermalpropertiesoffuseddepositionmodelingpolylacticacidandcompressionmoldingpolymethylmethacrylate AT wiwatwarrapanchairat thermalchangeaffectsflexuralandthermalpropertiesoffuseddepositionmodelingpolylacticacidandcompressionmoldingpolymethylmethacrylate AT srimaneepongviritpon thermalchangeaffectsflexuralandthermalpropertiesoffuseddepositionmodelingpolylacticacidandcompressionmoldingpolymethylmethacrylate |