Cargando…
Using Artificial Intelligence to Develop a Multivariate Model with a Machine Learning Model to Predict Complications in Mexican Diabetic Patients without Arterial Hypertension (National Nested Case-Control Study): Metformin and Elevated Normal Blood Pressure Are Risk Factors, and Obesity Is Protective
Diabetes mellitus is a disease with no cure that can cause complications and even death. Moreover, over time, it will lead to chronic complications. Predictive models have been used to identify people with a tendency to develop diabetes mellitus. At the same time, there is limited information regard...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949947/ https://www.ncbi.nlm.nih.gov/pubmed/36846513 http://dx.doi.org/10.1155/2023/8898958 |
_version_ | 1784893056801046528 |
---|---|
author | Zaizar-Fregoso, Sergio A. Lara-Esqueda, Agustin Hernández-Suarez, Carlos M. Delgado-Enciso, Josuel Garcia-Nevares, Arturo Canseco-Avila, Luis M. Guzman-Esquivel, Jose Rodriguez-Sanchez, Iram P. Martinez-Fierro, Margarita L. Ceja-Espiritu, Gabriel Ochoa-Díaz-Lopez, Hector Espinoza-Gomez, Francisco Sanchez-Diaz, Iyari Delgado-Enciso, Ivan |
author_facet | Zaizar-Fregoso, Sergio A. Lara-Esqueda, Agustin Hernández-Suarez, Carlos M. Delgado-Enciso, Josuel Garcia-Nevares, Arturo Canseco-Avila, Luis M. Guzman-Esquivel, Jose Rodriguez-Sanchez, Iram P. Martinez-Fierro, Margarita L. Ceja-Espiritu, Gabriel Ochoa-Díaz-Lopez, Hector Espinoza-Gomez, Francisco Sanchez-Diaz, Iyari Delgado-Enciso, Ivan |
author_sort | Zaizar-Fregoso, Sergio A. |
collection | PubMed |
description | Diabetes mellitus is a disease with no cure that can cause complications and even death. Moreover, over time, it will lead to chronic complications. Predictive models have been used to identify people with a tendency to develop diabetes mellitus. At the same time, there is limited information regarding the chronic complications of patients with diabetes. Our study is aimed at creating a machine-learning model that will be able to identify the risk factors of a diabetic patient developing chronic complications such as amputations, myocardial infarction, stroke, nephropathy, and retinopathy. The design is a national nested case-control study with 63,776 patients and 215 predictors with four years of data. Using an XGBoost model, the prediction of chronic complications has an AUC of 84%, and the model has identified the risk factors for chronic complications in patients with diabetes. According to the analysis, the most crucial risk factors based on SHAP values (Shapley additive explanations) are continued management, metformin treatment, age between 68 and 104 years, nutrition consultation, and treatment adherence. But we highlight two exciting findings. The first is a reaffirmation that high blood pressure figures across patients with diabetes without hypertension become a significant risk factor at diastolic > 70 mmHg (OR: 1.095, 95% CI: 1.078-1.113) or systolic > 120 mmHg (OR: 1.147, 95% CI: 1.124-1.171). Furthermore, people with diabetes with a BMI > 32 (overall obesity) (OR: 0.816, 95% CI: 0.8-0.833) have a statistically significant protective factor, which the paradox of obesity may explain. In conclusion, the results we have obtained show that artificial intelligence is a powerful and feasible tool to use for this type of study. However, we suggest that more studies be conducted to verify and elaborate upon our findings. |
format | Online Article Text |
id | pubmed-9949947 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-99499472023-02-24 Using Artificial Intelligence to Develop a Multivariate Model with a Machine Learning Model to Predict Complications in Mexican Diabetic Patients without Arterial Hypertension (National Nested Case-Control Study): Metformin and Elevated Normal Blood Pressure Are Risk Factors, and Obesity Is Protective Zaizar-Fregoso, Sergio A. Lara-Esqueda, Agustin Hernández-Suarez, Carlos M. Delgado-Enciso, Josuel Garcia-Nevares, Arturo Canseco-Avila, Luis M. Guzman-Esquivel, Jose Rodriguez-Sanchez, Iram P. Martinez-Fierro, Margarita L. Ceja-Espiritu, Gabriel Ochoa-Díaz-Lopez, Hector Espinoza-Gomez, Francisco Sanchez-Diaz, Iyari Delgado-Enciso, Ivan J Diabetes Res Research Article Diabetes mellitus is a disease with no cure that can cause complications and even death. Moreover, over time, it will lead to chronic complications. Predictive models have been used to identify people with a tendency to develop diabetes mellitus. At the same time, there is limited information regarding the chronic complications of patients with diabetes. Our study is aimed at creating a machine-learning model that will be able to identify the risk factors of a diabetic patient developing chronic complications such as amputations, myocardial infarction, stroke, nephropathy, and retinopathy. The design is a national nested case-control study with 63,776 patients and 215 predictors with four years of data. Using an XGBoost model, the prediction of chronic complications has an AUC of 84%, and the model has identified the risk factors for chronic complications in patients with diabetes. According to the analysis, the most crucial risk factors based on SHAP values (Shapley additive explanations) are continued management, metformin treatment, age between 68 and 104 years, nutrition consultation, and treatment adherence. But we highlight two exciting findings. The first is a reaffirmation that high blood pressure figures across patients with diabetes without hypertension become a significant risk factor at diastolic > 70 mmHg (OR: 1.095, 95% CI: 1.078-1.113) or systolic > 120 mmHg (OR: 1.147, 95% CI: 1.124-1.171). Furthermore, people with diabetes with a BMI > 32 (overall obesity) (OR: 0.816, 95% CI: 0.8-0.833) have a statistically significant protective factor, which the paradox of obesity may explain. In conclusion, the results we have obtained show that artificial intelligence is a powerful and feasible tool to use for this type of study. However, we suggest that more studies be conducted to verify and elaborate upon our findings. Hindawi 2023-02-16 /pmc/articles/PMC9949947/ /pubmed/36846513 http://dx.doi.org/10.1155/2023/8898958 Text en Copyright © 2023 Sergio A. Zaizar-Fregoso et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zaizar-Fregoso, Sergio A. Lara-Esqueda, Agustin Hernández-Suarez, Carlos M. Delgado-Enciso, Josuel Garcia-Nevares, Arturo Canseco-Avila, Luis M. Guzman-Esquivel, Jose Rodriguez-Sanchez, Iram P. Martinez-Fierro, Margarita L. Ceja-Espiritu, Gabriel Ochoa-Díaz-Lopez, Hector Espinoza-Gomez, Francisco Sanchez-Diaz, Iyari Delgado-Enciso, Ivan Using Artificial Intelligence to Develop a Multivariate Model with a Machine Learning Model to Predict Complications in Mexican Diabetic Patients without Arterial Hypertension (National Nested Case-Control Study): Metformin and Elevated Normal Blood Pressure Are Risk Factors, and Obesity Is Protective |
title | Using Artificial Intelligence to Develop a Multivariate Model with a Machine Learning Model to Predict Complications in Mexican Diabetic Patients without Arterial Hypertension (National Nested Case-Control Study): Metformin and Elevated Normal Blood Pressure Are Risk Factors, and Obesity Is Protective |
title_full | Using Artificial Intelligence to Develop a Multivariate Model with a Machine Learning Model to Predict Complications in Mexican Diabetic Patients without Arterial Hypertension (National Nested Case-Control Study): Metformin and Elevated Normal Blood Pressure Are Risk Factors, and Obesity Is Protective |
title_fullStr | Using Artificial Intelligence to Develop a Multivariate Model with a Machine Learning Model to Predict Complications in Mexican Diabetic Patients without Arterial Hypertension (National Nested Case-Control Study): Metformin and Elevated Normal Blood Pressure Are Risk Factors, and Obesity Is Protective |
title_full_unstemmed | Using Artificial Intelligence to Develop a Multivariate Model with a Machine Learning Model to Predict Complications in Mexican Diabetic Patients without Arterial Hypertension (National Nested Case-Control Study): Metformin and Elevated Normal Blood Pressure Are Risk Factors, and Obesity Is Protective |
title_short | Using Artificial Intelligence to Develop a Multivariate Model with a Machine Learning Model to Predict Complications in Mexican Diabetic Patients without Arterial Hypertension (National Nested Case-Control Study): Metformin and Elevated Normal Blood Pressure Are Risk Factors, and Obesity Is Protective |
title_sort | using artificial intelligence to develop a multivariate model with a machine learning model to predict complications in mexican diabetic patients without arterial hypertension (national nested case-control study): metformin and elevated normal blood pressure are risk factors, and obesity is protective |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949947/ https://www.ncbi.nlm.nih.gov/pubmed/36846513 http://dx.doi.org/10.1155/2023/8898958 |
work_keys_str_mv | AT zaizarfregososergioa usingartificialintelligencetodevelopamultivariatemodelwithamachinelearningmodeltopredictcomplicationsinmexicandiabeticpatientswithoutarterialhypertensionnationalnestedcasecontrolstudymetforminandelevatednormalbloodpressureareriskfactorsandobesityisprotect AT laraesquedaagustin usingartificialintelligencetodevelopamultivariatemodelwithamachinelearningmodeltopredictcomplicationsinmexicandiabeticpatientswithoutarterialhypertensionnationalnestedcasecontrolstudymetforminandelevatednormalbloodpressureareriskfactorsandobesityisprotect AT hernandezsuarezcarlosm usingartificialintelligencetodevelopamultivariatemodelwithamachinelearningmodeltopredictcomplicationsinmexicandiabeticpatientswithoutarterialhypertensionnationalnestedcasecontrolstudymetforminandelevatednormalbloodpressureareriskfactorsandobesityisprotect AT delgadoencisojosuel usingartificialintelligencetodevelopamultivariatemodelwithamachinelearningmodeltopredictcomplicationsinmexicandiabeticpatientswithoutarterialhypertensionnationalnestedcasecontrolstudymetforminandelevatednormalbloodpressureareriskfactorsandobesityisprotect AT garcianevaresarturo usingartificialintelligencetodevelopamultivariatemodelwithamachinelearningmodeltopredictcomplicationsinmexicandiabeticpatientswithoutarterialhypertensionnationalnestedcasecontrolstudymetforminandelevatednormalbloodpressureareriskfactorsandobesityisprotect AT cansecoavilaluism usingartificialintelligencetodevelopamultivariatemodelwithamachinelearningmodeltopredictcomplicationsinmexicandiabeticpatientswithoutarterialhypertensionnationalnestedcasecontrolstudymetforminandelevatednormalbloodpressureareriskfactorsandobesityisprotect AT guzmanesquiveljose usingartificialintelligencetodevelopamultivariatemodelwithamachinelearningmodeltopredictcomplicationsinmexicandiabeticpatientswithoutarterialhypertensionnationalnestedcasecontrolstudymetforminandelevatednormalbloodpressureareriskfactorsandobesityisprotect AT rodriguezsancheziramp usingartificialintelligencetodevelopamultivariatemodelwithamachinelearningmodeltopredictcomplicationsinmexicandiabeticpatientswithoutarterialhypertensionnationalnestedcasecontrolstudymetforminandelevatednormalbloodpressureareriskfactorsandobesityisprotect AT martinezfierromargarital usingartificialintelligencetodevelopamultivariatemodelwithamachinelearningmodeltopredictcomplicationsinmexicandiabeticpatientswithoutarterialhypertensionnationalnestedcasecontrolstudymetforminandelevatednormalbloodpressureareriskfactorsandobesityisprotect AT cejaespiritugabriel usingartificialintelligencetodevelopamultivariatemodelwithamachinelearningmodeltopredictcomplicationsinmexicandiabeticpatientswithoutarterialhypertensionnationalnestedcasecontrolstudymetforminandelevatednormalbloodpressureareriskfactorsandobesityisprotect AT ochoadiazlopezhector usingartificialintelligencetodevelopamultivariatemodelwithamachinelearningmodeltopredictcomplicationsinmexicandiabeticpatientswithoutarterialhypertensionnationalnestedcasecontrolstudymetforminandelevatednormalbloodpressureareriskfactorsandobesityisprotect AT espinozagomezfrancisco usingartificialintelligencetodevelopamultivariatemodelwithamachinelearningmodeltopredictcomplicationsinmexicandiabeticpatientswithoutarterialhypertensionnationalnestedcasecontrolstudymetforminandelevatednormalbloodpressureareriskfactorsandobesityisprotect AT sanchezdiaziyari usingartificialintelligencetodevelopamultivariatemodelwithamachinelearningmodeltopredictcomplicationsinmexicandiabeticpatientswithoutarterialhypertensionnationalnestedcasecontrolstudymetforminandelevatednormalbloodpressureareriskfactorsandobesityisprotect AT delgadoencisoivan usingartificialintelligencetodevelopamultivariatemodelwithamachinelearningmodeltopredictcomplicationsinmexicandiabeticpatientswithoutarterialhypertensionnationalnestedcasecontrolstudymetforminandelevatednormalbloodpressureareriskfactorsandobesityisprotect |