Cargando…
Machine learning combines atomistic simulations to predict SARS-CoV-2 Mpro inhibitors from natural compounds
To date, the COVID-19 pandemic has still been infectious around the world, continuously causing social and economic damage on a global scale. One of the most important therapeutic targets for the treatment of COVID-19 is the main protease (Mpro) of SARS-CoV-2. In this study, we combined machine-lear...
Autores principales: | Nguyen, Trung Hai, Thai, Quynh Mai, Pham, Minh Quan, Minh, Pham Thi Hong, Phung, Huong Thi Thu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950021/ https://www.ncbi.nlm.nih.gov/pubmed/36823394 http://dx.doi.org/10.1007/s11030-023-10601-1 |
Ejemplares similares
-
Potential inhibitors for SARS-CoV-2 Mpro from marine compounds
por: Tam, Nguyen Minh, et al.
Publicado: (2021) -
Searching and designing potential inhibitors for SARS-CoV-2 Mpro from natural sources using atomistic and deep-learning calculations
por: Tam, Nguyen Minh, et al.
Publicado: (2021) -
Unbinding ligands from SARS-CoV-2 Mpro via umbrella sampling simulations
por: Tam, Nguyen Minh, et al.
Publicado: (2022) -
Computational estimation of potential inhibitors from known drugs against the main protease of SARS-CoV-2
por: Tam, Nguyen Minh, et al.
Publicado: (2021) -
Upgrading nirmatrelvir to inhibit SARS-CoV-2 Mpro via DeepFrag and free energy calculations
por: Tam, Nguyen Minh, et al.
Publicado: (2023)