Cargando…
Deep ensemble learning enables highly accurate classification of stored red blood cell morphology
Changes in red blood cell (RBC) morphology distribution have emerged as a quantitative biomarker for the degradation of RBC functional properties during hypothermic storage. Previously published automated methods for classifying the morphology of stored RBCs often had insufficient accuracy and relie...
Autores principales: | Routt, Austin H., Yang, Natalia, Piety, Nathaniel Z., Lu, Madeleine, Shevkoplyas, Sergey S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950070/ https://www.ncbi.nlm.nih.gov/pubmed/36823298 http://dx.doi.org/10.1038/s41598-023-30214-w |
Ejemplares similares
-
Microfluidic capillary networks are more sensitive than ektacytometry to the decline of red blood cell deformability induced by storage
por: Piety, Nathaniel Z., et al.
Publicado: (2021) -
Substituting Sodium Hydrosulfite with Sodium Metabisulfite Improves Long-Term Stability of a Distributable Paper-Based Test Kit for Point-of-Care Screening for Sickle Cell Anemia
por: Torabian, Kian, et al.
Publicado: (2017) -
Validation of a Low-Cost Paper-Based Screening Test for Sickle Cell Anemia
por: Piety, Nathaniel Z., et al.
Publicado: (2016) -
Ensemble multimodal deep learning for early diagnosis and accurate classification of COVID-19()
por: Kumar, Santosh, et al.
Publicado: (2022) -
An Ensemble of Deep Learning Enabled Brain Stroke Classification Model in Magnetic Resonance Images
por: Eshmawi, Ala' A., et al.
Publicado: (2022)