Cargando…
Estimation of rocks’ failure parameters from drilling data by using artificial neural network
Comprehensive and precise knowledge about rocks' mechanical properties facilitate the drilling performance optimization, and hydraulic fracturing design and reduces the risk of wellbore-related problems. This paper is concerned with the failure parameters, namely, cohesion and friction angle wh...
Autores principales: | Siddig, Osama, Ibrahim, Ahmed Farid, Elkatatny, Salaheldin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950081/ https://www.ncbi.nlm.nih.gov/pubmed/36823434 http://dx.doi.org/10.1038/s41598-023-30092-2 |
Ejemplares similares
-
Real-time prediction of Poisson’s ratio from drilling parameters using machine learning tools
por: Siddig, Osama, et al.
Publicado: (2021) -
Data-Driven Modeling Approach for Pore Pressure Gradient
Prediction while Drilling from Drilling Parameters
por: Abdelaal, Ahmed, et al.
Publicado: (2021) -
Utilization of Artificial Neural Network in Predicting the Total Organic Carbon in Devonian Shale Using the Conventional Well Logs and the Spectral Gamma Ray
por: Siddig, Osama, et al.
Publicado: (2021) -
Newly Developed Correlations to Predict the Rheological Parameters of High-Bentonite Drilling Fluid Using Neural Networks
por: Gowida, Ahmed, et al.
Publicado: (2020) -
Application of Various Machine Learning Techniques in Predicting Total Organic Carbon from Well Logs
por: Siddig, Osama, et al.
Publicado: (2021)