Cargando…
A “one-size-fits-most” walking recognition method for smartphones, smartwatches, and wearable accelerometers
The ubiquity of personal digital devices offers unprecedented opportunities to study human behavior. Current state-of-the-art methods quantify physical activity using “activity counts,” a measure which overlooks specific types of physical activities. We propose a walking recognition method for sub-s...
Autores principales: | Straczkiewicz, Marcin, Huang, Emily J., Onnela, Jukka-Pekka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950089/ https://www.ncbi.nlm.nih.gov/pubmed/36823348 http://dx.doi.org/10.1038/s41746-022-00745-z |
Ejemplares similares
-
A systematic review of smartphone-based human activity recognition methods for health research
por: Straczkiewicz, Marcin, et al.
Publicado: (2021) -
Smartphone-Based Activity Recognition Using Multistream Movelets Combining Accelerometer and Gyroscope Data
por: Huang, Emily J., et al.
Publicado: (2022) -
Augmented Movelet Method for Activity Classification Using Smartphone Gyroscope and Accelerometer Data
por: Huang, Emily J., et al.
Publicado: (2020) -
Wearable device and smartphone data quantify ALS progression and may provide novel outcome measures
por: Johnson, Stephen A., et al.
Publicado: (2023) -
Validation of an open-source smartphone step counting algorithm in clinical and non-clinical settings
por: Straczkiewicz, Marcin, et al.
Publicado: (2023)