Cargando…
Direct prediction of genetic aberrations from pathology images in gastric cancer with swarm learning
BACKGROUND: Computational pathology uses deep learning (DL) to extract biomarkers from routine pathology slides. Large multicentric datasets improve performance, but such datasets are scarce for gastric cancer. This limitation could be overcome by Swarm Learning (SL). METHODS: Here, we report the re...
Autores principales: | Saldanha, Oliver Lester, Muti, Hannah Sophie, Grabsch, Heike I., Langer, Rupert, Dislich, Bastian, Kohlruss, Meike, Keller, Gisela, van Treeck, Marko, Hewitt, Katherine Jane, Kolbinger, Fiona R., Veldhuizen, Gregory Patrick, Boor, Peter, Foersch, Sebastian, Truhn, Daniel, Kather, Jakob Nikolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950158/ https://www.ncbi.nlm.nih.gov/pubmed/36264524 http://dx.doi.org/10.1007/s10120-022-01347-0 |
Ejemplares similares
-
Adversarial attacks and adversarial robustness in computational pathology
por: Ghaffari Laleh, Narmin, et al.
Publicado: (2022) -
Swarm learning for decentralized artificial intelligence in cancer histopathology
por: Saldanha, Oliver Lester, et al.
Publicado: (2022) -
Medical domain knowledge in domain-agnostic generative AI
por: Kather, Jakob Nikolas, et al.
Publicado: (2022) -
Programmed death-ligand 1 (PD-L1) expression in primary gastric adenocarcinoma and matched metastases
por: Liu, Drolaiz H. W., et al.
Publicado: (2023) -
Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study
por: Niehues, Jan Moritz, et al.
Publicado: (2023)