Cargando…
Preventing profiling for ethical fake news detection
A news article’s online audience provides useful insights about the article’s identity. However, fake news classifiers using such information risk relying on profiling. In response to the rising demand for ethical AI, we present a profiling-avoiding algorithm that leverages Twitter users during mode...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pergamon Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950332/ https://www.ncbi.nlm.nih.gov/pubmed/36874352 http://dx.doi.org/10.1016/j.ipm.2022.103206 |
_version_ | 1784893139904888832 |
---|---|
author | Allein, Liesbeth Moens, Marie-Francine Perrotta, Domenico |
author_facet | Allein, Liesbeth Moens, Marie-Francine Perrotta, Domenico |
author_sort | Allein, Liesbeth |
collection | PubMed |
description | A news article’s online audience provides useful insights about the article’s identity. However, fake news classifiers using such information risk relying on profiling. In response to the rising demand for ethical AI, we present a profiling-avoiding algorithm that leverages Twitter users during model optimisation while excluding them when an article’s veracity is evaluated. For this, we take inspiration from the social sciences and introduce two objective functions that maximise correlation between the article and its spreaders, and among those spreaders. We applied our profiling-avoiding algorithm to three popular neural classifiers and obtained results on fake news data discussing a variety of news topics. The positive impact on prediction performance demonstrates the soundness of the proposed objective functions to integrate social context in text-based classifiers. Moreover, statistical visualisation and dimension reduction techniques show that the user-inspired classifiers better discriminate between unseen fake and true news in their latent spaces. Our study serves as a stepping stone to resolve the underexplored issue of profiling-dependent decision-making in user-informed fake news detection. |
format | Online Article Text |
id | pubmed-9950332 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Pergamon Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-99503322023-03-01 Preventing profiling for ethical fake news detection Allein, Liesbeth Moens, Marie-Francine Perrotta, Domenico Inf Process Manag Article A news article’s online audience provides useful insights about the article’s identity. However, fake news classifiers using such information risk relying on profiling. In response to the rising demand for ethical AI, we present a profiling-avoiding algorithm that leverages Twitter users during model optimisation while excluding them when an article’s veracity is evaluated. For this, we take inspiration from the social sciences and introduce two objective functions that maximise correlation between the article and its spreaders, and among those spreaders. We applied our profiling-avoiding algorithm to three popular neural classifiers and obtained results on fake news data discussing a variety of news topics. The positive impact on prediction performance demonstrates the soundness of the proposed objective functions to integrate social context in text-based classifiers. Moreover, statistical visualisation and dimension reduction techniques show that the user-inspired classifiers better discriminate between unseen fake and true news in their latent spaces. Our study serves as a stepping stone to resolve the underexplored issue of profiling-dependent decision-making in user-informed fake news detection. Pergamon Press 2023-03 /pmc/articles/PMC9950332/ /pubmed/36874352 http://dx.doi.org/10.1016/j.ipm.2022.103206 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Allein, Liesbeth Moens, Marie-Francine Perrotta, Domenico Preventing profiling for ethical fake news detection |
title | Preventing profiling for ethical fake news detection |
title_full | Preventing profiling for ethical fake news detection |
title_fullStr | Preventing profiling for ethical fake news detection |
title_full_unstemmed | Preventing profiling for ethical fake news detection |
title_short | Preventing profiling for ethical fake news detection |
title_sort | preventing profiling for ethical fake news detection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950332/ https://www.ncbi.nlm.nih.gov/pubmed/36874352 http://dx.doi.org/10.1016/j.ipm.2022.103206 |
work_keys_str_mv | AT alleinliesbeth preventingprofilingforethicalfakenewsdetection AT moensmariefrancine preventingprofilingforethicalfakenewsdetection AT perrottadomenico preventingprofilingforethicalfakenewsdetection |