Cargando…
Predictive models in emergency medicine and their missing data strategies: a systematic review
In the field of emergency medicine (EM), the use of decision support tools based on artificial intelligence has increased markedly in recent years. In some cases, data are omitted deliberately and thus constitute “data not purposely collected” (DNPC). This accepted information bias can be managed in...
Autores principales: | Arnaud, Emilien, Elbattah, Mahmoud, Ammirati, Christine, Dequen, Gilles, Ghazali, Daniel Aiham |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950346/ https://www.ncbi.nlm.nih.gov/pubmed/36823165 http://dx.doi.org/10.1038/s41746-023-00770-6 |
Ejemplares similares
-
Use of Artificial Intelligence to Manage Patient Flow in Emergency Department during the COVID-19 Pandemic: A Prospective, Single-Center Study
por: Arnaud, Emilien, et al.
Publicado: (2022) -
Variational Autoencoder for Image-Based Augmentation of Eye-Tracking Data
por: Elbattah, Mahmoud, et al.
Publicado: (2021) -
Computer-Aided Screening of Autism Spectrum Disorder: Eye-Tracking Study Using Data Visualization and Deep Learning
por: Cilia, Federica, et al.
Publicado: (2021) -
Profile and Motivation of Patients Consulting in Emergency Departments While not Requiring Such a Level of Care
por: Ghazali, Daniel Aiham, et al.
Publicado: (2019) -
Climate Change Impacts on Disaster and Emergency Medicine Focusing on Mitigation Disruptive Effects: an International Perspective
por: Ghazali, Daniel Aiham, et al.
Publicado: (2018)