Cargando…

An event-oriented database of meteorological droughts in Europe based on spatio-temporal clustering

Droughts evolve in space and time without following borders or pre-determined temporal constraints. Here, we present a new database of drought events built with a three-dimensional density-based clustering algorithm. The chosen approach is able to identify and characterize the spatio-temporal evolut...

Descripción completa

Detalles Bibliográficos
Autores principales: Cammalleri, Carmelo, Acosta Navarro, Juan Camilo, Bavera, Davide, Diaz, Vitali, Di Ciollo, Chiara, Maetens, Willem, Magni, Diego, Masante, Dario, Spinoni, Jonathan, Toreti, Andrea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950368/
https://www.ncbi.nlm.nih.gov/pubmed/36823221
http://dx.doi.org/10.1038/s41598-023-30153-6
_version_ 1784893148056518656
author Cammalleri, Carmelo
Acosta Navarro, Juan Camilo
Bavera, Davide
Diaz, Vitali
Di Ciollo, Chiara
Maetens, Willem
Magni, Diego
Masante, Dario
Spinoni, Jonathan
Toreti, Andrea
author_facet Cammalleri, Carmelo
Acosta Navarro, Juan Camilo
Bavera, Davide
Diaz, Vitali
Di Ciollo, Chiara
Maetens, Willem
Magni, Diego
Masante, Dario
Spinoni, Jonathan
Toreti, Andrea
author_sort Cammalleri, Carmelo
collection PubMed
description Droughts evolve in space and time without following borders or pre-determined temporal constraints. Here, we present a new database of drought events built with a three-dimensional density-based clustering algorithm. The chosen approach is able to identify and characterize the spatio-temporal evolution of drought events, and it was tuned with a supervised approach against a set of past global droughts characterized independently by multiple drought experts. About 200 events were detected over Europein the period 1981-2020 using SPI-3 (3-month cumulated Standardized Precipitation Index) maps derived from the ECMWF (European Centre for Medium-range Weather Forecasts) 5th generation reanalysis (ERA5) precipitation. The largest European meteorological droughts during this period occurred in 1996, 2003, 2002 and 2018. A general agreement between the major events identified by the algorithm and drought impact records was found, as well as with previous datasets based on pre-defined regions.
format Online
Article
Text
id pubmed-9950368
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-99503682023-02-25 An event-oriented database of meteorological droughts in Europe based on spatio-temporal clustering Cammalleri, Carmelo Acosta Navarro, Juan Camilo Bavera, Davide Diaz, Vitali Di Ciollo, Chiara Maetens, Willem Magni, Diego Masante, Dario Spinoni, Jonathan Toreti, Andrea Sci Rep Article Droughts evolve in space and time without following borders or pre-determined temporal constraints. Here, we present a new database of drought events built with a three-dimensional density-based clustering algorithm. The chosen approach is able to identify and characterize the spatio-temporal evolution of drought events, and it was tuned with a supervised approach against a set of past global droughts characterized independently by multiple drought experts. About 200 events were detected over Europein the period 1981-2020 using SPI-3 (3-month cumulated Standardized Precipitation Index) maps derived from the ECMWF (European Centre for Medium-range Weather Forecasts) 5th generation reanalysis (ERA5) precipitation. The largest European meteorological droughts during this period occurred in 1996, 2003, 2002 and 2018. A general agreement between the major events identified by the algorithm and drought impact records was found, as well as with previous datasets based on pre-defined regions. Nature Publishing Group UK 2023-02-23 /pmc/articles/PMC9950368/ /pubmed/36823221 http://dx.doi.org/10.1038/s41598-023-30153-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Cammalleri, Carmelo
Acosta Navarro, Juan Camilo
Bavera, Davide
Diaz, Vitali
Di Ciollo, Chiara
Maetens, Willem
Magni, Diego
Masante, Dario
Spinoni, Jonathan
Toreti, Andrea
An event-oriented database of meteorological droughts in Europe based on spatio-temporal clustering
title An event-oriented database of meteorological droughts in Europe based on spatio-temporal clustering
title_full An event-oriented database of meteorological droughts in Europe based on spatio-temporal clustering
title_fullStr An event-oriented database of meteorological droughts in Europe based on spatio-temporal clustering
title_full_unstemmed An event-oriented database of meteorological droughts in Europe based on spatio-temporal clustering
title_short An event-oriented database of meteorological droughts in Europe based on spatio-temporal clustering
title_sort event-oriented database of meteorological droughts in europe based on spatio-temporal clustering
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950368/
https://www.ncbi.nlm.nih.gov/pubmed/36823221
http://dx.doi.org/10.1038/s41598-023-30153-6
work_keys_str_mv AT cammallericarmelo aneventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT acostanavarrojuancamilo aneventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT baveradavide aneventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT diazvitali aneventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT diciollochiara aneventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT maetenswillem aneventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT magnidiego aneventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT masantedario aneventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT spinonijonathan aneventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT toretiandrea aneventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT cammallericarmelo eventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT acostanavarrojuancamilo eventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT baveradavide eventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT diazvitali eventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT diciollochiara eventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT maetenswillem eventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT magnidiego eventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT masantedario eventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT spinonijonathan eventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering
AT toretiandrea eventorienteddatabaseofmeteorologicaldroughtsineuropebasedonspatiotemporalclustering