Cargando…

Novel insights into plant defensin ingestion induced metabolic responses in the polyphagous insect pest Helicoverpa armigera

Lepidopteran insect pest Helicoverpa armigera is one of the most destructive pests of crop plants and several biotechnological approaches are being developed for its control. Plant defensins are small cationic and cysteine-rich peptides that play a role in plant defense. Ingestion of a defensin from...

Descripción completa

Detalles Bibliográficos
Autores principales: Mulla, Javed A., Tamhane, Vaijayanti A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950371/
https://www.ncbi.nlm.nih.gov/pubmed/36823197
http://dx.doi.org/10.1038/s41598-023-29250-3
Descripción
Sumario:Lepidopteran insect pest Helicoverpa armigera is one of the most destructive pests of crop plants and several biotechnological approaches are being developed for its control. Plant defensins are small cationic and cysteine-rich peptides that play a role in plant defense. Ingestion of a defensin from Capsicum annuum (CanDef-20) induced a dose-dependent reduction in larval and pupal mass, delayed metamorphosis and also severely reduced fecundity and fertility in H. armigera. To understand the molecular mechanisms of CanDef-20 ingestion-mediated antibiosis in H. armigera larvae, a comparative transcriptomics analysis was carried out. Predominant downregulation of GOs represents serine-type endopeptidases, structural constituents of ribosomes and integral membrane components and differential upregulation of ATP binding, nucleus and translation, while up-regulation of nucleic acid binding represented by transposable elements, were detected. Different isoforms of lipase, serine endopeptidase, glutathione S-transferase, cadherin, alkaline phosphatase and aminopeptidases were found to be upregulated as a compensatory response to CanDef-20 ingestion. In vitro enzyme assays and qPCR analysis of some representative genes associated with vital cellular processes like metamorphosis, food digestion and gut membrane indicated adaptive differential regulations in CanDef-20 fed H. armigera larvae. We conclude that CanDef-20 ingestion affects insect metabolism in a number of ways through its interaction with cell membrane, enzymes, cytoplasmic proteins and triggering transposon mobilization which are linked to growth retardation and adaptive strategies in H. armigera.