Cargando…
An interpretable machine learning framework for measuring urban perceptions from panoramic street view images
The proliferation of street view images (SVIs) and the constant advancements in deep learning techniques have enabled urban analysts to extract and evaluate urban perceptions from large-scale urban streetscapes. However, many existing analytical frameworks have been found to lack interpretability du...
Autores principales: | Liu, Yunzhe, Chen, Meixu, Wang, Meihui, Huang, Jing, Thomas, Fisher, Rahimi, Kazem, Mamouei, Mohammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950426/ https://www.ncbi.nlm.nih.gov/pubmed/36843850 http://dx.doi.org/10.1016/j.isci.2023.106132 |
Ejemplares similares
-
Restorative perception of urban streets: Interpretation using deep learning and MGWR models
por: Han, Xin, et al.
Publicado: (2023) -
Modeling the Effect of Streetscape Environment on Crime Using Street View Images and Interpretable Machine-Learning Technique
por: Xie, Huafang, et al.
Publicado: (2022) -
Alcohol in urban streetscapes: a comparison of the use of Google Street View and on-street observation
por: Clews, Chris, et al.
Publicado: (2016) -
A Unified Framework for Street-View Panorama Stitching
por: Li, Li, et al.
Publicado: (2016) -
A panoramic view of Riemannian geometry
por: Berger, Marcel
Publicado: (2003)