Cargando…
Wafer-scale and universal van der Waals metal semiconductor contact
Van der Waals (vdW) metallic contacts have been demonstrated as a promising approach to reduce the contact resistance and minimize the Fermi level pinning at the interface of two-dimensional (2D) semiconductors. However, only a limited number of metals can be mechanically peeled and laminated to fab...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950472/ https://www.ncbi.nlm.nih.gov/pubmed/36823424 http://dx.doi.org/10.1038/s41467-023-36715-6 |
_version_ | 1784893171446054912 |
---|---|
author | Kong, Lingan Wu, Ruixia Chen, Yang Huangfu, Ying Liu, Liting Li, Wei Lu, Donglin Tao, Quanyang Song, Wenjing Li, Wanying Lu, Zheyi Liu, Xiao Li, Yunxin Li, Zhiwei Tong, Wei Ding, Shuimei Liu, Songlong Ma, Likuan Ren, Liwang Wang, Yiliu Liao, Lei Duan, Xidong Liu, Yuan |
author_facet | Kong, Lingan Wu, Ruixia Chen, Yang Huangfu, Ying Liu, Liting Li, Wei Lu, Donglin Tao, Quanyang Song, Wenjing Li, Wanying Lu, Zheyi Liu, Xiao Li, Yunxin Li, Zhiwei Tong, Wei Ding, Shuimei Liu, Songlong Ma, Likuan Ren, Liwang Wang, Yiliu Liao, Lei Duan, Xidong Liu, Yuan |
author_sort | Kong, Lingan |
collection | PubMed |
description | Van der Waals (vdW) metallic contacts have been demonstrated as a promising approach to reduce the contact resistance and minimize the Fermi level pinning at the interface of two-dimensional (2D) semiconductors. However, only a limited number of metals can be mechanically peeled and laminated to fabricate vdW contacts, and the required manual transfer process is not scalable. Here, we report a wafer-scale and universal vdW metal integration strategy readily applicable to a wide range of metals and semiconductors. By utilizing a thermally decomposable polymer as the buffer layer, different metals were directly deposited without damaging the underlying 2D semiconductor channels. The polymer buffer could be dry-removed through thermal annealing. With this technique, various metals could be vdW integrated as the contact of 2D transistors, including Ag, Al, Ti, Cr, Ni, Cu, Co, Au, Pd. Finally, we demonstrate that this vdW integration strategy can be extended to bulk semiconductors with reduced Fermi level pinning effect. |
format | Online Article Text |
id | pubmed-9950472 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-99504722023-02-25 Wafer-scale and universal van der Waals metal semiconductor contact Kong, Lingan Wu, Ruixia Chen, Yang Huangfu, Ying Liu, Liting Li, Wei Lu, Donglin Tao, Quanyang Song, Wenjing Li, Wanying Lu, Zheyi Liu, Xiao Li, Yunxin Li, Zhiwei Tong, Wei Ding, Shuimei Liu, Songlong Ma, Likuan Ren, Liwang Wang, Yiliu Liao, Lei Duan, Xidong Liu, Yuan Nat Commun Article Van der Waals (vdW) metallic contacts have been demonstrated as a promising approach to reduce the contact resistance and minimize the Fermi level pinning at the interface of two-dimensional (2D) semiconductors. However, only a limited number of metals can be mechanically peeled and laminated to fabricate vdW contacts, and the required manual transfer process is not scalable. Here, we report a wafer-scale and universal vdW metal integration strategy readily applicable to a wide range of metals and semiconductors. By utilizing a thermally decomposable polymer as the buffer layer, different metals were directly deposited without damaging the underlying 2D semiconductor channels. The polymer buffer could be dry-removed through thermal annealing. With this technique, various metals could be vdW integrated as the contact of 2D transistors, including Ag, Al, Ti, Cr, Ni, Cu, Co, Au, Pd. Finally, we demonstrate that this vdW integration strategy can be extended to bulk semiconductors with reduced Fermi level pinning effect. Nature Publishing Group UK 2023-02-23 /pmc/articles/PMC9950472/ /pubmed/36823424 http://dx.doi.org/10.1038/s41467-023-36715-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Kong, Lingan Wu, Ruixia Chen, Yang Huangfu, Ying Liu, Liting Li, Wei Lu, Donglin Tao, Quanyang Song, Wenjing Li, Wanying Lu, Zheyi Liu, Xiao Li, Yunxin Li, Zhiwei Tong, Wei Ding, Shuimei Liu, Songlong Ma, Likuan Ren, Liwang Wang, Yiliu Liao, Lei Duan, Xidong Liu, Yuan Wafer-scale and universal van der Waals metal semiconductor contact |
title | Wafer-scale and universal van der Waals metal semiconductor contact |
title_full | Wafer-scale and universal van der Waals metal semiconductor contact |
title_fullStr | Wafer-scale and universal van der Waals metal semiconductor contact |
title_full_unstemmed | Wafer-scale and universal van der Waals metal semiconductor contact |
title_short | Wafer-scale and universal van der Waals metal semiconductor contact |
title_sort | wafer-scale and universal van der waals metal semiconductor contact |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950472/ https://www.ncbi.nlm.nih.gov/pubmed/36823424 http://dx.doi.org/10.1038/s41467-023-36715-6 |
work_keys_str_mv | AT konglingan waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT wuruixia waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT chenyang waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT huangfuying waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT liuliting waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT liwei waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT ludonglin waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT taoquanyang waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT songwenjing waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT liwanying waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT luzheyi waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT liuxiao waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT liyunxin waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT lizhiwei waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT tongwei waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT dingshuimei waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT liusonglong waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT malikuan waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT renliwang waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT wangyiliu waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT liaolei waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT duanxidong waferscaleanduniversalvanderwaalsmetalsemiconductorcontact AT liuyuan waferscaleanduniversalvanderwaalsmetalsemiconductorcontact |