Cargando…

Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles

In this numerical investigation, completely developed laminar convective heat transfer characteristics of a Williamson hybrid ferronanofluid over a cylindrical surface are reported. This new model in 2D is engaged to examine the effects of the magnetic field, thermal radiation factor, volume fractio...

Descripción completa

Detalles Bibliográficos
Autores principales: Swalmeh, Mohammed Z., Alwawi, Firas A., Kausar, Muhammad Salman, Ibrahim, Mohd Asrul Hery, Hamarsheh, Abdulkareem Saleh, Sulaiman, Ibrahim Mohammed, Awwal, Aliyu Muhammed, Pakkaranang, Nuttapol, Panyanak, Bancha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950478/
https://www.ncbi.nlm.nih.gov/pubmed/36823230
http://dx.doi.org/10.1038/s41598-023-29707-5
_version_ 1784893172739997696
author Swalmeh, Mohammed Z.
Alwawi, Firas A.
Kausar, Muhammad Salman
Ibrahim, Mohd Asrul Hery
Hamarsheh, Abdulkareem Saleh
Sulaiman, Ibrahim Mohammed
Awwal, Aliyu Muhammed
Pakkaranang, Nuttapol
Panyanak, Bancha
author_facet Swalmeh, Mohammed Z.
Alwawi, Firas A.
Kausar, Muhammad Salman
Ibrahim, Mohd Asrul Hery
Hamarsheh, Abdulkareem Saleh
Sulaiman, Ibrahim Mohammed
Awwal, Aliyu Muhammed
Pakkaranang, Nuttapol
Panyanak, Bancha
author_sort Swalmeh, Mohammed Z.
collection PubMed
description In this numerical investigation, completely developed laminar convective heat transfer characteristics of a Williamson hybrid ferronanofluid over a cylindrical surface are reported. This new model in 2D is engaged to examine the effects of the magnetic field, thermal radiation factor, volume fraction of ultrafine particles, and Weissenberg number with the help of the Keller box method. The numerical calculations are implemented at a magnetic parameter range of 0.4 to 0.8, volume fraction range of 0.0 to 0.1, and a Weissenberg number range of 0.1 to 0.8. The numerical outcomes concluded that the velocity increases when the thermal radiation parameter and the volume fraction of a nanoparticle are increased, but inverse impacts are obtained for the magnetic parameter and the Weissenberg number. The rate of energy transport increases with increasing thermal radiation and volume fraction, while it declines with increasing the magnetic parameter and Weissenberg number. The drag force shows a positive relationship with the thermal radiation parameter and has an opposite relationship with the Weissenberg number and the magnetic parameter. Furthermore, even when the magnetic field, thermal radiation, volume fraction, and Weissenberg number are all present, the heat transfer rate of Williamson hybrid ferronanofluid is greater than that of mono Williamson ferronanofluid.
format Online
Article
Text
id pubmed-9950478
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-99504782023-02-25 Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles Swalmeh, Mohammed Z. Alwawi, Firas A. Kausar, Muhammad Salman Ibrahim, Mohd Asrul Hery Hamarsheh, Abdulkareem Saleh Sulaiman, Ibrahim Mohammed Awwal, Aliyu Muhammed Pakkaranang, Nuttapol Panyanak, Bancha Sci Rep Article In this numerical investigation, completely developed laminar convective heat transfer characteristics of a Williamson hybrid ferronanofluid over a cylindrical surface are reported. This new model in 2D is engaged to examine the effects of the magnetic field, thermal radiation factor, volume fraction of ultrafine particles, and Weissenberg number with the help of the Keller box method. The numerical calculations are implemented at a magnetic parameter range of 0.4 to 0.8, volume fraction range of 0.0 to 0.1, and a Weissenberg number range of 0.1 to 0.8. The numerical outcomes concluded that the velocity increases when the thermal radiation parameter and the volume fraction of a nanoparticle are increased, but inverse impacts are obtained for the magnetic parameter and the Weissenberg number. The rate of energy transport increases with increasing thermal radiation and volume fraction, while it declines with increasing the magnetic parameter and Weissenberg number. The drag force shows a positive relationship with the thermal radiation parameter and has an opposite relationship with the Weissenberg number and the magnetic parameter. Furthermore, even when the magnetic field, thermal radiation, volume fraction, and Weissenberg number are all present, the heat transfer rate of Williamson hybrid ferronanofluid is greater than that of mono Williamson ferronanofluid. Nature Publishing Group UK 2023-02-23 /pmc/articles/PMC9950478/ /pubmed/36823230 http://dx.doi.org/10.1038/s41598-023-29707-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Swalmeh, Mohammed Z.
Alwawi, Firas A.
Kausar, Muhammad Salman
Ibrahim, Mohd Asrul Hery
Hamarsheh, Abdulkareem Saleh
Sulaiman, Ibrahim Mohammed
Awwal, Aliyu Muhammed
Pakkaranang, Nuttapol
Panyanak, Bancha
Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles
title Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles
title_full Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles
title_fullStr Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles
title_full_unstemmed Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles
title_short Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles
title_sort numerical simulation on energy transfer enhancement of a williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950478/
https://www.ncbi.nlm.nih.gov/pubmed/36823230
http://dx.doi.org/10.1038/s41598-023-29707-5
work_keys_str_mv AT swalmehmohammedz numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles
AT alwawifirasa numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles
AT kausarmuhammadsalman numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles
AT ibrahimmohdasrulhery numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles
AT hamarshehabdulkareemsaleh numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles
AT sulaimanibrahimmohammed numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles
AT awwalaliyumuhammed numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles
AT pakkaranangnuttapol numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles
AT panyanakbancha numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles