Cargando…
Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles
In this numerical investigation, completely developed laminar convective heat transfer characteristics of a Williamson hybrid ferronanofluid over a cylindrical surface are reported. This new model in 2D is engaged to examine the effects of the magnetic field, thermal radiation factor, volume fractio...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950478/ https://www.ncbi.nlm.nih.gov/pubmed/36823230 http://dx.doi.org/10.1038/s41598-023-29707-5 |
_version_ | 1784893172739997696 |
---|---|
author | Swalmeh, Mohammed Z. Alwawi, Firas A. Kausar, Muhammad Salman Ibrahim, Mohd Asrul Hery Hamarsheh, Abdulkareem Saleh Sulaiman, Ibrahim Mohammed Awwal, Aliyu Muhammed Pakkaranang, Nuttapol Panyanak, Bancha |
author_facet | Swalmeh, Mohammed Z. Alwawi, Firas A. Kausar, Muhammad Salman Ibrahim, Mohd Asrul Hery Hamarsheh, Abdulkareem Saleh Sulaiman, Ibrahim Mohammed Awwal, Aliyu Muhammed Pakkaranang, Nuttapol Panyanak, Bancha |
author_sort | Swalmeh, Mohammed Z. |
collection | PubMed |
description | In this numerical investigation, completely developed laminar convective heat transfer characteristics of a Williamson hybrid ferronanofluid over a cylindrical surface are reported. This new model in 2D is engaged to examine the effects of the magnetic field, thermal radiation factor, volume fraction of ultrafine particles, and Weissenberg number with the help of the Keller box method. The numerical calculations are implemented at a magnetic parameter range of 0.4 to 0.8, volume fraction range of 0.0 to 0.1, and a Weissenberg number range of 0.1 to 0.8. The numerical outcomes concluded that the velocity increases when the thermal radiation parameter and the volume fraction of a nanoparticle are increased, but inverse impacts are obtained for the magnetic parameter and the Weissenberg number. The rate of energy transport increases with increasing thermal radiation and volume fraction, while it declines with increasing the magnetic parameter and Weissenberg number. The drag force shows a positive relationship with the thermal radiation parameter and has an opposite relationship with the Weissenberg number and the magnetic parameter. Furthermore, even when the magnetic field, thermal radiation, volume fraction, and Weissenberg number are all present, the heat transfer rate of Williamson hybrid ferronanofluid is greater than that of mono Williamson ferronanofluid. |
format | Online Article Text |
id | pubmed-9950478 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-99504782023-02-25 Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles Swalmeh, Mohammed Z. Alwawi, Firas A. Kausar, Muhammad Salman Ibrahim, Mohd Asrul Hery Hamarsheh, Abdulkareem Saleh Sulaiman, Ibrahim Mohammed Awwal, Aliyu Muhammed Pakkaranang, Nuttapol Panyanak, Bancha Sci Rep Article In this numerical investigation, completely developed laminar convective heat transfer characteristics of a Williamson hybrid ferronanofluid over a cylindrical surface are reported. This new model in 2D is engaged to examine the effects of the magnetic field, thermal radiation factor, volume fraction of ultrafine particles, and Weissenberg number with the help of the Keller box method. The numerical calculations are implemented at a magnetic parameter range of 0.4 to 0.8, volume fraction range of 0.0 to 0.1, and a Weissenberg number range of 0.1 to 0.8. The numerical outcomes concluded that the velocity increases when the thermal radiation parameter and the volume fraction of a nanoparticle are increased, but inverse impacts are obtained for the magnetic parameter and the Weissenberg number. The rate of energy transport increases with increasing thermal radiation and volume fraction, while it declines with increasing the magnetic parameter and Weissenberg number. The drag force shows a positive relationship with the thermal radiation parameter and has an opposite relationship with the Weissenberg number and the magnetic parameter. Furthermore, even when the magnetic field, thermal radiation, volume fraction, and Weissenberg number are all present, the heat transfer rate of Williamson hybrid ferronanofluid is greater than that of mono Williamson ferronanofluid. Nature Publishing Group UK 2023-02-23 /pmc/articles/PMC9950478/ /pubmed/36823230 http://dx.doi.org/10.1038/s41598-023-29707-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Swalmeh, Mohammed Z. Alwawi, Firas A. Kausar, Muhammad Salman Ibrahim, Mohd Asrul Hery Hamarsheh, Abdulkareem Saleh Sulaiman, Ibrahim Mohammed Awwal, Aliyu Muhammed Pakkaranang, Nuttapol Panyanak, Bancha Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles |
title | Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles |
title_full | Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles |
title_fullStr | Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles |
title_full_unstemmed | Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles |
title_short | Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles |
title_sort | numerical simulation on energy transfer enhancement of a williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950478/ https://www.ncbi.nlm.nih.gov/pubmed/36823230 http://dx.doi.org/10.1038/s41598-023-29707-5 |
work_keys_str_mv | AT swalmehmohammedz numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles AT alwawifirasa numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles AT kausarmuhammadsalman numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles AT ibrahimmohdasrulhery numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles AT hamarshehabdulkareemsaleh numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles AT sulaimanibrahimmohammed numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles AT awwalaliyumuhammed numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles AT pakkaranangnuttapol numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles AT panyanakbancha numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles |