Cargando…
A clinical prediction model for lung metastasis risk in osteosarcoma: A multicenter retrospective study
BACKGROUND: Lung metastases (LM) have a poor prognosis of osteosarcoma. This study aimed to predict the risk of LM using the nomogram in patients with osteosarcoma. METHODS: A total of 1100 patients who were diagnosed as osteosarcoma between 2010 and 2019 in the Surveillance, Epidemiology and End Re...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950508/ https://www.ncbi.nlm.nih.gov/pubmed/36845714 http://dx.doi.org/10.3389/fonc.2023.1001219 |
_version_ | 1784893180015017984 |
---|---|
author | Zheng, Shengping Chen, Longhao Wang, Jiaming Wang, Haosheng Hu, Zhaohui Li, Wanying Xu, Chan Ma, Minmin Wang, Bing Huang, Yangjun Liu, Qiang Tang, Zhi-Ri Liu, Guanyu Wang, Tingting Li, Wenle Yin, Chengliang |
author_facet | Zheng, Shengping Chen, Longhao Wang, Jiaming Wang, Haosheng Hu, Zhaohui Li, Wanying Xu, Chan Ma, Minmin Wang, Bing Huang, Yangjun Liu, Qiang Tang, Zhi-Ri Liu, Guanyu Wang, Tingting Li, Wenle Yin, Chengliang |
author_sort | Zheng, Shengping |
collection | PubMed |
description | BACKGROUND: Lung metastases (LM) have a poor prognosis of osteosarcoma. This study aimed to predict the risk of LM using the nomogram in patients with osteosarcoma. METHODS: A total of 1100 patients who were diagnosed as osteosarcoma between 2010 and 2019 in the Surveillance, Epidemiology and End Results (SEER) database were selected as the training cohort. Univariate and multivariate logistic regression analyses were used to identify independent prognostic factors of osteosarcoma lung metastases. 108 osteosarcoma patients from a multicentre dataset was as valiation data. The predictive power of the nomogram model was assessed by receiver operating characteristic curves (ROC) and calibration plots, and decision curve analysis (DCA) was utilized to interpret the accurate validity in clinical practice. RESULTS: A total of 1208 patients with osteosarcoma from both the SEER database(n=1100) and the multicentre database (n=108) were analyzed. Univariate and multivariate logistic regression analyses showed that Survival time, Sex, T-stage, N-stage, Surgery, Radiation, and Bone metastases were independent risk factors for lung metastasis. We combined these factors to construct a nomogram for estimating the risk of lung metastasis. Internal and external validation showed significant predictive differences (AUC 0.779, 0.792 respectively). Calibration plots showed good performance of the nomogram model. CONCLUSIONS: In this study, a nomogram model for predicting the risk of lung metastases in osteosarcoma patients was constructed and turned out to be accurate and reliable through internal and external validation. Moreover we built a webpage calculator (https://drliwenle.shinyapps.io/OSLM/) taken into account nomogram model to help clinicians make more accurate and personalized predictions. |
format | Online Article Text |
id | pubmed-9950508 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-99505082023-02-25 A clinical prediction model for lung metastasis risk in osteosarcoma: A multicenter retrospective study Zheng, Shengping Chen, Longhao Wang, Jiaming Wang, Haosheng Hu, Zhaohui Li, Wanying Xu, Chan Ma, Minmin Wang, Bing Huang, Yangjun Liu, Qiang Tang, Zhi-Ri Liu, Guanyu Wang, Tingting Li, Wenle Yin, Chengliang Front Oncol Oncology BACKGROUND: Lung metastases (LM) have a poor prognosis of osteosarcoma. This study aimed to predict the risk of LM using the nomogram in patients with osteosarcoma. METHODS: A total of 1100 patients who were diagnosed as osteosarcoma between 2010 and 2019 in the Surveillance, Epidemiology and End Results (SEER) database were selected as the training cohort. Univariate and multivariate logistic regression analyses were used to identify independent prognostic factors of osteosarcoma lung metastases. 108 osteosarcoma patients from a multicentre dataset was as valiation data. The predictive power of the nomogram model was assessed by receiver operating characteristic curves (ROC) and calibration plots, and decision curve analysis (DCA) was utilized to interpret the accurate validity in clinical practice. RESULTS: A total of 1208 patients with osteosarcoma from both the SEER database(n=1100) and the multicentre database (n=108) were analyzed. Univariate and multivariate logistic regression analyses showed that Survival time, Sex, T-stage, N-stage, Surgery, Radiation, and Bone metastases were independent risk factors for lung metastasis. We combined these factors to construct a nomogram for estimating the risk of lung metastasis. Internal and external validation showed significant predictive differences (AUC 0.779, 0.792 respectively). Calibration plots showed good performance of the nomogram model. CONCLUSIONS: In this study, a nomogram model for predicting the risk of lung metastases in osteosarcoma patients was constructed and turned out to be accurate and reliable through internal and external validation. Moreover we built a webpage calculator (https://drliwenle.shinyapps.io/OSLM/) taken into account nomogram model to help clinicians make more accurate and personalized predictions. Frontiers Media S.A. 2023-02-10 /pmc/articles/PMC9950508/ /pubmed/36845714 http://dx.doi.org/10.3389/fonc.2023.1001219 Text en Copyright © 2023 Zheng, Chen, Wang, Wang, Hu, Li, Xu, Ma, Wang, Huang, Liu, Tang, Liu, Wang, Li and Yin https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Zheng, Shengping Chen, Longhao Wang, Jiaming Wang, Haosheng Hu, Zhaohui Li, Wanying Xu, Chan Ma, Minmin Wang, Bing Huang, Yangjun Liu, Qiang Tang, Zhi-Ri Liu, Guanyu Wang, Tingting Li, Wenle Yin, Chengliang A clinical prediction model for lung metastasis risk in osteosarcoma: A multicenter retrospective study |
title | A clinical prediction model for lung metastasis risk in osteosarcoma: A multicenter retrospective study |
title_full | A clinical prediction model for lung metastasis risk in osteosarcoma: A multicenter retrospective study |
title_fullStr | A clinical prediction model for lung metastasis risk in osteosarcoma: A multicenter retrospective study |
title_full_unstemmed | A clinical prediction model for lung metastasis risk in osteosarcoma: A multicenter retrospective study |
title_short | A clinical prediction model for lung metastasis risk in osteosarcoma: A multicenter retrospective study |
title_sort | clinical prediction model for lung metastasis risk in osteosarcoma: a multicenter retrospective study |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950508/ https://www.ncbi.nlm.nih.gov/pubmed/36845714 http://dx.doi.org/10.3389/fonc.2023.1001219 |
work_keys_str_mv | AT zhengshengping aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT chenlonghao aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT wangjiaming aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT wanghaosheng aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT huzhaohui aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT liwanying aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT xuchan aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT maminmin aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT wangbing aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT huangyangjun aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT liuqiang aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT tangzhiri aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT liuguanyu aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT wangtingting aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT liwenle aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT yinchengliang aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT zhengshengping clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT chenlonghao clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT wangjiaming clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT wanghaosheng clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT huzhaohui clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT liwanying clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT xuchan clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT maminmin clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT wangbing clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT huangyangjun clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT liuqiang clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT tangzhiri clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT liuguanyu clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT wangtingting clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT liwenle clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy AT yinchengliang clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy |