Cargando…

A clinical prediction model for lung metastasis risk in osteosarcoma: A multicenter retrospective study

BACKGROUND: Lung metastases (LM) have a poor prognosis of osteosarcoma. This study aimed to predict the risk of LM using the nomogram in patients with osteosarcoma. METHODS: A total of 1100 patients who were diagnosed as osteosarcoma between 2010 and 2019 in the Surveillance, Epidemiology and End Re...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Shengping, Chen, Longhao, Wang, Jiaming, Wang, Haosheng, Hu, Zhaohui, Li, Wanying, Xu, Chan, Ma, Minmin, Wang, Bing, Huang, Yangjun, Liu, Qiang, Tang, Zhi-Ri, Liu, Guanyu, Wang, Tingting, Li, Wenle, Yin, Chengliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950508/
https://www.ncbi.nlm.nih.gov/pubmed/36845714
http://dx.doi.org/10.3389/fonc.2023.1001219
_version_ 1784893180015017984
author Zheng, Shengping
Chen, Longhao
Wang, Jiaming
Wang, Haosheng
Hu, Zhaohui
Li, Wanying
Xu, Chan
Ma, Minmin
Wang, Bing
Huang, Yangjun
Liu, Qiang
Tang, Zhi-Ri
Liu, Guanyu
Wang, Tingting
Li, Wenle
Yin, Chengliang
author_facet Zheng, Shengping
Chen, Longhao
Wang, Jiaming
Wang, Haosheng
Hu, Zhaohui
Li, Wanying
Xu, Chan
Ma, Minmin
Wang, Bing
Huang, Yangjun
Liu, Qiang
Tang, Zhi-Ri
Liu, Guanyu
Wang, Tingting
Li, Wenle
Yin, Chengliang
author_sort Zheng, Shengping
collection PubMed
description BACKGROUND: Lung metastases (LM) have a poor prognosis of osteosarcoma. This study aimed to predict the risk of LM using the nomogram in patients with osteosarcoma. METHODS: A total of 1100 patients who were diagnosed as osteosarcoma between 2010 and 2019 in the Surveillance, Epidemiology and End Results (SEER) database were selected as the training cohort. Univariate and multivariate logistic regression analyses were used to identify independent prognostic factors of osteosarcoma lung metastases. 108 osteosarcoma patients from a multicentre dataset was as valiation data. The predictive power of the nomogram model was assessed by receiver operating characteristic curves (ROC) and calibration plots, and decision curve analysis (DCA) was utilized to interpret the accurate validity in clinical practice. RESULTS: A total of 1208 patients with osteosarcoma from both the SEER database(n=1100) and the multicentre database (n=108) were analyzed. Univariate and multivariate logistic regression analyses showed that Survival time, Sex, T-stage, N-stage, Surgery, Radiation, and Bone metastases were independent risk factors for lung metastasis. We combined these factors to construct a nomogram for estimating the risk of lung metastasis. Internal and external validation showed significant predictive differences (AUC 0.779, 0.792 respectively). Calibration plots showed good performance of the nomogram model. CONCLUSIONS: In this study, a nomogram model for predicting the risk of lung metastases in osteosarcoma patients was constructed and turned out to be accurate and reliable through internal and external validation. Moreover we built a webpage calculator (https://drliwenle.shinyapps.io/OSLM/) taken into account nomogram model to help clinicians make more accurate and personalized predictions.
format Online
Article
Text
id pubmed-9950508
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-99505082023-02-25 A clinical prediction model for lung metastasis risk in osteosarcoma: A multicenter retrospective study Zheng, Shengping Chen, Longhao Wang, Jiaming Wang, Haosheng Hu, Zhaohui Li, Wanying Xu, Chan Ma, Minmin Wang, Bing Huang, Yangjun Liu, Qiang Tang, Zhi-Ri Liu, Guanyu Wang, Tingting Li, Wenle Yin, Chengliang Front Oncol Oncology BACKGROUND: Lung metastases (LM) have a poor prognosis of osteosarcoma. This study aimed to predict the risk of LM using the nomogram in patients with osteosarcoma. METHODS: A total of 1100 patients who were diagnosed as osteosarcoma between 2010 and 2019 in the Surveillance, Epidemiology and End Results (SEER) database were selected as the training cohort. Univariate and multivariate logistic regression analyses were used to identify independent prognostic factors of osteosarcoma lung metastases. 108 osteosarcoma patients from a multicentre dataset was as valiation data. The predictive power of the nomogram model was assessed by receiver operating characteristic curves (ROC) and calibration plots, and decision curve analysis (DCA) was utilized to interpret the accurate validity in clinical practice. RESULTS: A total of 1208 patients with osteosarcoma from both the SEER database(n=1100) and the multicentre database (n=108) were analyzed. Univariate and multivariate logistic regression analyses showed that Survival time, Sex, T-stage, N-stage, Surgery, Radiation, and Bone metastases were independent risk factors for lung metastasis. We combined these factors to construct a nomogram for estimating the risk of lung metastasis. Internal and external validation showed significant predictive differences (AUC 0.779, 0.792 respectively). Calibration plots showed good performance of the nomogram model. CONCLUSIONS: In this study, a nomogram model for predicting the risk of lung metastases in osteosarcoma patients was constructed and turned out to be accurate and reliable through internal and external validation. Moreover we built a webpage calculator (https://drliwenle.shinyapps.io/OSLM/) taken into account nomogram model to help clinicians make more accurate and personalized predictions. Frontiers Media S.A. 2023-02-10 /pmc/articles/PMC9950508/ /pubmed/36845714 http://dx.doi.org/10.3389/fonc.2023.1001219 Text en Copyright © 2023 Zheng, Chen, Wang, Wang, Hu, Li, Xu, Ma, Wang, Huang, Liu, Tang, Liu, Wang, Li and Yin https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Zheng, Shengping
Chen, Longhao
Wang, Jiaming
Wang, Haosheng
Hu, Zhaohui
Li, Wanying
Xu, Chan
Ma, Minmin
Wang, Bing
Huang, Yangjun
Liu, Qiang
Tang, Zhi-Ri
Liu, Guanyu
Wang, Tingting
Li, Wenle
Yin, Chengliang
A clinical prediction model for lung metastasis risk in osteosarcoma: A multicenter retrospective study
title A clinical prediction model for lung metastasis risk in osteosarcoma: A multicenter retrospective study
title_full A clinical prediction model for lung metastasis risk in osteosarcoma: A multicenter retrospective study
title_fullStr A clinical prediction model for lung metastasis risk in osteosarcoma: A multicenter retrospective study
title_full_unstemmed A clinical prediction model for lung metastasis risk in osteosarcoma: A multicenter retrospective study
title_short A clinical prediction model for lung metastasis risk in osteosarcoma: A multicenter retrospective study
title_sort clinical prediction model for lung metastasis risk in osteosarcoma: a multicenter retrospective study
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950508/
https://www.ncbi.nlm.nih.gov/pubmed/36845714
http://dx.doi.org/10.3389/fonc.2023.1001219
work_keys_str_mv AT zhengshengping aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT chenlonghao aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT wangjiaming aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT wanghaosheng aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT huzhaohui aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT liwanying aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT xuchan aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT maminmin aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT wangbing aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT huangyangjun aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT liuqiang aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT tangzhiri aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT liuguanyu aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT wangtingting aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT liwenle aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT yinchengliang aclinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT zhengshengping clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT chenlonghao clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT wangjiaming clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT wanghaosheng clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT huzhaohui clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT liwanying clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT xuchan clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT maminmin clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT wangbing clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT huangyangjun clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT liuqiang clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT tangzhiri clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT liuguanyu clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT wangtingting clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT liwenle clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy
AT yinchengliang clinicalpredictionmodelforlungmetastasisriskinosteosarcomaamulticenterretrospectivestudy