Cargando…
Physiological evaluations of low-level impulsive sounds generated by an air conditioner
Air conditioners are typically installed in buildings and vehicles to control thermal conditions for long periods of time. Air conditioners generate certain types of sounds while functioning, which are among the main noise sources in buildings and vehicles. Most sounds produced by the air conditione...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950742/ https://www.ncbi.nlm.nih.gov/pubmed/36844263 http://dx.doi.org/10.3389/fpsyg.2023.1128752 |
Sumario: | Air conditioners are typically installed in buildings and vehicles to control thermal conditions for long periods of time. Air conditioners generate certain types of sounds while functioning, which are among the main noise sources in buildings and vehicles. Most sounds produced by the air conditioner do not change with time, and the sound quality of steady sounds has been investigated. However, air conditioners can generate low-level impulsive sounds. Customers complain of the discomfort caused when these sounds disturb the silence in their living rooms and bedrooms. This study aimed to determine the physical factors that have a significant effect on physiological responses to low-level impulsive sounds produced by air conditioners. We used physiological responses because it is difficult for people to evaluate sounds psychologically when they are sleeping or are not focused on the sounds. The A-weighted equivalent continuous sound pressure level (L(Aeq)) and the factors extracted from the autocorrelation function (ACF) were evaluated as physical factors. Participant responses on electroencephalography (EEG) were evaluated. The correlation between the EEG responses and ACF factors was determined. The L(Aeq), peak, and delay time to the first maximum peak of the ACF were identified as significant factors for physiological responses to low-level impulsive sounds. |
---|