Cargando…

Single-leg stance on a challenging surface can enhance cortical activation in the right hemisphere – A case study

Maintaining body balance, whether static or dynamic, is critical in performing everyday activities and developing and optimizing basic motor skills. This study investigates how a professional alpine skier's brain activates on the contralateral side during a single-leg stance. Continuous-wave fu...

Descripción completa

Detalles Bibliográficos
Autores principales: Khan, Haroon, Qureshi, Nauman Khalid, Yazidi, Anis, Engell, Håvard, Mirtaheri, Peyman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950900/
https://www.ncbi.nlm.nih.gov/pubmed/36846707
http://dx.doi.org/10.1016/j.heliyon.2023.e13628
_version_ 1784893272502566912
author Khan, Haroon
Qureshi, Nauman Khalid
Yazidi, Anis
Engell, Håvard
Mirtaheri, Peyman
author_facet Khan, Haroon
Qureshi, Nauman Khalid
Yazidi, Anis
Engell, Håvard
Mirtaheri, Peyman
author_sort Khan, Haroon
collection PubMed
description Maintaining body balance, whether static or dynamic, is critical in performing everyday activities and developing and optimizing basic motor skills. This study investigates how a professional alpine skier's brain activates on the contralateral side during a single-leg stance. Continuous-wave functional near-infrared spectroscopy (fNIRS) signals were recorded with sixteen sources and detectors over the motor cortex to investigate brain hemodynamics. Three different tasks were performed: barefooted walk (BFW), right-leg stance (RLS), and left-leg stance (LLS). The signal processing pipeline includes channel rejection, the conversation of raw intensities into hemoglobin concentration changes using modified Beer-Lambert law, baseline zero-adjustments, z-normalization, and temporal filtration. The hemodynamic brain signal was estimated using a general linear model with a 2-gamma function. Measured activations (t-values) with p-value <0.05 were only considered as statistically significant active channels. Compared to all other conditions, BFW has the lowest brain activation. LLS is associated with more contralateral brain activation than RLS. During LLS, higher brain activation was observed across all brain regions. The right hemisphere has comparatively more activated regions-of-interest. Higher ΔHbO demands in the dorsolateral prefrontal, pre-motor, supplementary motor cortex, and primary motor cortex were observed in the right hemisphere relative to the left which explains higher energy demands for balancing during LLS. Broca's temporal lobe was also activated during both LLS and RLS. Comparing the results with BFW– which is considered the most realistic walking condition–, it is concluded that higher demands of ΔHbO predict higher motor control demands for balancing. The participant struggled with balance during the LLS, showing higher ΔHbO in both hemispheres compared to two other conditions, which indicates the higher requirement for motor control to maintain balance. A post-physiotherapy exercise program is expected to improve balance during LLS, leading to fewer changes to ΔHbO.
format Online
Article
Text
id pubmed-9950900
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-99509002023-02-25 Single-leg stance on a challenging surface can enhance cortical activation in the right hemisphere – A case study Khan, Haroon Qureshi, Nauman Khalid Yazidi, Anis Engell, Håvard Mirtaheri, Peyman Heliyon Research Article Maintaining body balance, whether static or dynamic, is critical in performing everyday activities and developing and optimizing basic motor skills. This study investigates how a professional alpine skier's brain activates on the contralateral side during a single-leg stance. Continuous-wave functional near-infrared spectroscopy (fNIRS) signals were recorded with sixteen sources and detectors over the motor cortex to investigate brain hemodynamics. Three different tasks were performed: barefooted walk (BFW), right-leg stance (RLS), and left-leg stance (LLS). The signal processing pipeline includes channel rejection, the conversation of raw intensities into hemoglobin concentration changes using modified Beer-Lambert law, baseline zero-adjustments, z-normalization, and temporal filtration. The hemodynamic brain signal was estimated using a general linear model with a 2-gamma function. Measured activations (t-values) with p-value <0.05 were only considered as statistically significant active channels. Compared to all other conditions, BFW has the lowest brain activation. LLS is associated with more contralateral brain activation than RLS. During LLS, higher brain activation was observed across all brain regions. The right hemisphere has comparatively more activated regions-of-interest. Higher ΔHbO demands in the dorsolateral prefrontal, pre-motor, supplementary motor cortex, and primary motor cortex were observed in the right hemisphere relative to the left which explains higher energy demands for balancing during LLS. Broca's temporal lobe was also activated during both LLS and RLS. Comparing the results with BFW– which is considered the most realistic walking condition–, it is concluded that higher demands of ΔHbO predict higher motor control demands for balancing. The participant struggled with balance during the LLS, showing higher ΔHbO in both hemispheres compared to two other conditions, which indicates the higher requirement for motor control to maintain balance. A post-physiotherapy exercise program is expected to improve balance during LLS, leading to fewer changes to ΔHbO. Elsevier 2023-02-10 /pmc/articles/PMC9950900/ /pubmed/36846707 http://dx.doi.org/10.1016/j.heliyon.2023.e13628 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Khan, Haroon
Qureshi, Nauman Khalid
Yazidi, Anis
Engell, Håvard
Mirtaheri, Peyman
Single-leg stance on a challenging surface can enhance cortical activation in the right hemisphere – A case study
title Single-leg stance on a challenging surface can enhance cortical activation in the right hemisphere – A case study
title_full Single-leg stance on a challenging surface can enhance cortical activation in the right hemisphere – A case study
title_fullStr Single-leg stance on a challenging surface can enhance cortical activation in the right hemisphere – A case study
title_full_unstemmed Single-leg stance on a challenging surface can enhance cortical activation in the right hemisphere – A case study
title_short Single-leg stance on a challenging surface can enhance cortical activation in the right hemisphere – A case study
title_sort single-leg stance on a challenging surface can enhance cortical activation in the right hemisphere – a case study
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950900/
https://www.ncbi.nlm.nih.gov/pubmed/36846707
http://dx.doi.org/10.1016/j.heliyon.2023.e13628
work_keys_str_mv AT khanharoon singlelegstanceonachallengingsurfacecanenhancecorticalactivationintherighthemisphereacasestudy
AT qureshinaumankhalid singlelegstanceonachallengingsurfacecanenhancecorticalactivationintherighthemisphereacasestudy
AT yazidianis singlelegstanceonachallengingsurfacecanenhancecorticalactivationintherighthemisphereacasestudy
AT engellhavard singlelegstanceonachallengingsurfacecanenhancecorticalactivationintherighthemisphereacasestudy
AT mirtaheripeyman singlelegstanceonachallengingsurfacecanenhancecorticalactivationintherighthemisphereacasestudy