Cargando…

Cell-sized asymmetric phospholipid-amphiphilic protein vesicles with growth, fission, and molecule transportation

Lipid vesicles, which mimic cell membranes in structure and components, have been used to study the origin of life and artificial cell construction. A different approach to developing cell-mimicking systems focuses on the formation of protein- or polypeptide-based vesicles. However, micro-sized prot...

Descripción completa

Detalles Bibliográficos
Autores principales: Suzuki, Masato, Kamiya, Koki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950948/
https://www.ncbi.nlm.nih.gov/pubmed/36843838
http://dx.doi.org/10.1016/j.isci.2023.106086
Descripción
Sumario:Lipid vesicles, which mimic cell membranes in structure and components, have been used to study the origin of life and artificial cell construction. A different approach to developing cell-mimicking systems focuses on the formation of protein- or polypeptide-based vesicles. However, micro-sized protein vesicles that are similar in membrane dynamics to the cell and that reconstitute membrane proteins are difficult to form. In this study, we generated cell-sized asymmetric phospholipid-amphiphilic protein (oleosin) vesicles that allow the reconstitution of membrane proteins and the growth and fission of vesicles. These vesicles are composed of a lipid membrane on the outer leaflet and an oleosin membrane on the inner leaflet. Further, we elucidated a mechanism for the growth and fission of cell-sized asymmetric phospholipid-oleosin vesicles by feeding phospholipid micelles. Our asymmetric phospholipid-oleosin vesicles with the advantages of the lipid leaflet and the protein leaflet will potentially promote understanding of biochemistry and synthetic biology.