Cargando…
Dexmedetomidine ameliorates ischemia-induced nerve injury by up-regulating Sox11 expression
BACKGROUND: Dexmedetomidine (Dex) is associated with several biological processes. Ischemic stroke has the characteristics of high morbidity and mortality. Herein, we aimed to explore whether Dex ameliorates ischemia-induced injury and determine its mechanism. METHODS: Real-time quantitative polymer...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951012/ https://www.ncbi.nlm.nih.gov/pubmed/36846013 http://dx.doi.org/10.21037/atm-22-6639 |
Sumario: | BACKGROUND: Dexmedetomidine (Dex) is associated with several biological processes. Ischemic stroke has the characteristics of high morbidity and mortality. Herein, we aimed to explore whether Dex ameliorates ischemia-induced injury and determine its mechanism. METHODS: Real-time quantitative polymerase chain reaction (qRT-PCR) and western blotting were used to measure gene and protein expression. Cellular viability and proliferation were assessed by Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays, respectively. Cell apoptosis was detected by flow cytometry. An oxygen-glucose deprivation/reoxygenation model of SK-N-SH and SH-SY5Y cells was constructed. A middle cerebral artery occlusion (MCAO) model was also built to assess Dex function in vivo. Neuronal function was assessed using the Bederson Behavior Score and Longa Behavior Score. RESULTS: We found that Dex positively and dose-dependently regulated Sox11 expression and prevented damage caused by oxygen-glucose deprivation/reoxygenation (OGD/R), enhancing cell viability and proliferation and reducing apoptosis in SK-N-SH and SH-SY5Y cells. The overexpression of Sox11 antagonized OGD/R-induced SK-N-SH and SH-SY5Y cell apoptosis and promoted cell growth in vitro. Furthermore, cell proliferation was decreased and cell apoptosis was increased after Sox11 knockdown in Dex-treated SK-N-SH and SH-SY5Y cells. We demonstrated that Dex prevented OGD/R-induced cell injury by up-regulating Sox11. Furthermore, we also confirmed that Dex protected rat from ischemia-induced injury in the MCAO model. CONCLUSIONS: The role of Dex in cell viability and survival was verified in this study. Moreover, Dex protected neurons from MCAO-induced injury by up-regulating the expression of Sox11. Our research proposes a potential drug to improve the functional recovery of stroke patients in the clinic. |
---|