Cargando…
Mucoadhesive Dendrons Conjugated to Mesoporous Silica Nanoparticles as a Drug Delivery Approach for Orally Administered Biopharmaceuticals
[Image: see text] Biological drugs are increasingly important for patients and industry due to their application in the treatment of common and potentially life-threatening diseases such as diabetes, cancer, and obesity. While most marketed biopharmaceuticals today are injectables, the potential of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951175/ https://www.ncbi.nlm.nih.gov/pubmed/36749788 http://dx.doi.org/10.1021/acsami.2c16502 |
_version_ | 1784893332914176000 |
---|---|
author | Tollemeto, Matteo Huang, Zheng Christensen, Jørn B. Mørck Nielsen, Hanne Rønholt, Stine |
author_facet | Tollemeto, Matteo Huang, Zheng Christensen, Jørn B. Mørck Nielsen, Hanne Rønholt, Stine |
author_sort | Tollemeto, Matteo |
collection | PubMed |
description | [Image: see text] Biological drugs are increasingly important for patients and industry due to their application in the treatment of common and potentially life-threatening diseases such as diabetes, cancer, and obesity. While most marketed biopharmaceuticals today are injectables, the potential of mucoadhesive delivery systems based on dendron-coated mesoporous silica nanoparticles for oral delivery of biological drugs is explored in this project. We hypothesize that specifically designed dendrons can be employed as mucoadhesive excipients and used to decorate the surface of nanoparticles with properties to embed a drug molecule. We initially tested a novel synthesis method for the preparation of dendrons, which was successfully validated by the chemical characterization of the compounds. The interaction between dendrons and mucin was studied through isothermal titration calorimetry and quartz crystal microbalance with dissipation monitoring and proved to be spontaneous and thermodynamically favorable. Dendrons were conjugated onto 244.4 nm mesoporous silica nanoparticles and characterized for chemical composition, size, and surface charge, which all showed a successful conjugation. Finally, dynamic light scattering was used to study the interaction between nanoparticles and porcine gastric mucin, whereas the interaction between nanoparticles and porcine intestinal mucus was characterized by rheological measurements. This study shows a deeper biophysical understanding of the interaction between nanoparticles and mucin or native porcine intestinal mucus, further leveraging the current understanding of how dendrons can be used as excipients to interact with mucin. This will provide knowledge for the potential development of a new generation of mucoadhesive nanoformulations for the oral delivery of biopharmaceuticals. |
format | Online Article Text |
id | pubmed-9951175 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-99511752023-02-25 Mucoadhesive Dendrons Conjugated to Mesoporous Silica Nanoparticles as a Drug Delivery Approach for Orally Administered Biopharmaceuticals Tollemeto, Matteo Huang, Zheng Christensen, Jørn B. Mørck Nielsen, Hanne Rønholt, Stine ACS Appl Mater Interfaces [Image: see text] Biological drugs are increasingly important for patients and industry due to their application in the treatment of common and potentially life-threatening diseases such as diabetes, cancer, and obesity. While most marketed biopharmaceuticals today are injectables, the potential of mucoadhesive delivery systems based on dendron-coated mesoporous silica nanoparticles for oral delivery of biological drugs is explored in this project. We hypothesize that specifically designed dendrons can be employed as mucoadhesive excipients and used to decorate the surface of nanoparticles with properties to embed a drug molecule. We initially tested a novel synthesis method for the preparation of dendrons, which was successfully validated by the chemical characterization of the compounds. The interaction between dendrons and mucin was studied through isothermal titration calorimetry and quartz crystal microbalance with dissipation monitoring and proved to be spontaneous and thermodynamically favorable. Dendrons were conjugated onto 244.4 nm mesoporous silica nanoparticles and characterized for chemical composition, size, and surface charge, which all showed a successful conjugation. Finally, dynamic light scattering was used to study the interaction between nanoparticles and porcine gastric mucin, whereas the interaction between nanoparticles and porcine intestinal mucus was characterized by rheological measurements. This study shows a deeper biophysical understanding of the interaction between nanoparticles and mucin or native porcine intestinal mucus, further leveraging the current understanding of how dendrons can be used as excipients to interact with mucin. This will provide knowledge for the potential development of a new generation of mucoadhesive nanoformulations for the oral delivery of biopharmaceuticals. American Chemical Society 2023-02-07 /pmc/articles/PMC9951175/ /pubmed/36749788 http://dx.doi.org/10.1021/acsami.2c16502 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Tollemeto, Matteo Huang, Zheng Christensen, Jørn B. Mørck Nielsen, Hanne Rønholt, Stine Mucoadhesive Dendrons Conjugated to Mesoporous Silica Nanoparticles as a Drug Delivery Approach for Orally Administered Biopharmaceuticals |
title | Mucoadhesive
Dendrons Conjugated to Mesoporous Silica
Nanoparticles as a Drug Delivery Approach for Orally Administered
Biopharmaceuticals |
title_full | Mucoadhesive
Dendrons Conjugated to Mesoporous Silica
Nanoparticles as a Drug Delivery Approach for Orally Administered
Biopharmaceuticals |
title_fullStr | Mucoadhesive
Dendrons Conjugated to Mesoporous Silica
Nanoparticles as a Drug Delivery Approach for Orally Administered
Biopharmaceuticals |
title_full_unstemmed | Mucoadhesive
Dendrons Conjugated to Mesoporous Silica
Nanoparticles as a Drug Delivery Approach for Orally Administered
Biopharmaceuticals |
title_short | Mucoadhesive
Dendrons Conjugated to Mesoporous Silica
Nanoparticles as a Drug Delivery Approach for Orally Administered
Biopharmaceuticals |
title_sort | mucoadhesive
dendrons conjugated to mesoporous silica
nanoparticles as a drug delivery approach for orally administered
biopharmaceuticals |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951175/ https://www.ncbi.nlm.nih.gov/pubmed/36749788 http://dx.doi.org/10.1021/acsami.2c16502 |
work_keys_str_mv | AT tollemetomatteo mucoadhesivedendronsconjugatedtomesoporoussilicananoparticlesasadrugdeliveryapproachfororallyadministeredbiopharmaceuticals AT huangzheng mucoadhesivedendronsconjugatedtomesoporoussilicananoparticlesasadrugdeliveryapproachfororallyadministeredbiopharmaceuticals AT christensenjørnb mucoadhesivedendronsconjugatedtomesoporoussilicananoparticlesasadrugdeliveryapproachfororallyadministeredbiopharmaceuticals AT mørcknielsenhanne mucoadhesivedendronsconjugatedtomesoporoussilicananoparticlesasadrugdeliveryapproachfororallyadministeredbiopharmaceuticals AT rønholtstine mucoadhesivedendronsconjugatedtomesoporoussilicananoparticlesasadrugdeliveryapproachfororallyadministeredbiopharmaceuticals |