Cargando…
Chemistry-Informed Machine Learning for Polymer Electrolyte Discovery
[Image: see text] Solid polymer electrolytes (SPEs) have the potential to improve lithium-ion batteries by enhancing safety and enabling higher energy densities. However, SPEs suffer from significantly lower ionic conductivity than liquid and solid ceramic electrolytes, limiting their adoption in fu...
Autores principales: | Bradford, Gabriel, Lopez, Jeffrey, Ruza, Jurgis, Stolberg, Michael A., Osterude, Richard, Johnson, Jeremiah A., Gomez-Bombarelli, Rafael, Shao-Horn, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951296/ https://www.ncbi.nlm.nih.gov/pubmed/36844492 http://dx.doi.org/10.1021/acscentsci.2c01123 |
Ejemplares similares
-
Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties
por: Xie, Tian, et al.
Publicado: (2022) -
Quantitative Mapping of Molecular Substituents to
Macroscopic Properties Enables Predictive Design of Oligoethylene
Glycol-Based Lithium Electrolytes
por: Qiao, Bo, et al.
Publicado: (2020) -
Machine learning-guided discovery of ionic polymer electrolytes for lithium metal batteries
por: Li, Kai, et al.
Publicado: (2023) -
Development and Progression of Polymer Electrolytes for Batteries: Influence of Structure and Chemistry
por: Rollo-Walker, Gregory, et al.
Publicado: (2021) -
Publisher Correction: Machine learning-guided discovery of ionic polymer electrolytes for lithium metal batteries
por: Li, Kai, et al.
Publicado: (2023)