Cargando…
Covalent Organic Framework Nanobowls as Activatable Nanosensitizers for Tumor‐Specific and Ferroptosis‐Augmented Sonodynamic Therapy
Covalent organic frameworks (COFs) have attracted increasing attention for biomedical applications. COFs‐based nanosensitizers with uniform nanoscale morphology and tumor‐specific curative effects are in high demand; however, their synthesis is yet challenging. In this study, distinct COF nanobowls...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951320/ https://www.ncbi.nlm.nih.gov/pubmed/36594611 http://dx.doi.org/10.1002/advs.202206009 |
_version_ | 1784893362931761152 |
---|---|
author | Zhang, Shanshan Xia, Shujun Chen, Liang Chen, Yu Zhou, Jianqiao |
author_facet | Zhang, Shanshan Xia, Shujun Chen, Liang Chen, Yu Zhou, Jianqiao |
author_sort | Zhang, Shanshan |
collection | PubMed |
description | Covalent organic frameworks (COFs) have attracted increasing attention for biomedical applications. COFs‐based nanosensitizers with uniform nanoscale morphology and tumor‐specific curative effects are in high demand; however, their synthesis is yet challenging. In this study, distinct COF nanobowls are synthesized in a controlled manner and engineered as activatable nanosensitizers with tumor‐specific sonodynamic activity. High crystallinity ensures an ordered porous structure of COF nanobowls for the efficient loading of the small‐molecule sonosensitizer rose bengal (RB). To circumvent non‐specific damage to normal tissues, the sonosensitization effect is specifically inhibited by the in situ growth of manganese oxide (MnO (x) ) on RB‐loaded COFs. Upon reaction with tumor‐overexpressed glutathione (GSH), the “gatekeeper” MnO (x) is rapidly decomposed to recover the reactive oxygen species (ROS) generation capability of the COF nanosensitizers under ultrasound irradiation. Increased intracellular ROS stress and GSH consumption concomitantly induce ferroptosis to improve sonodynamic efficacy. Additionally, the unconventional bowl‐shaped morphology renders the nanosensitizers with enhanced tumor accumulation and retention. The combination of tumor‐specific sonodynamic therapy and ferroptosis achieves high efficacy in killing cancer cells and inhibiting tumor growth. This study paves the way for the development of COF nanosensitizers with unconventional morphologies for biomedicine, offering a paradigm to realize activatable and ferroptosis‐augmented sonodynamic tumor therapy. |
format | Online Article Text |
id | pubmed-9951320 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-99513202023-02-25 Covalent Organic Framework Nanobowls as Activatable Nanosensitizers for Tumor‐Specific and Ferroptosis‐Augmented Sonodynamic Therapy Zhang, Shanshan Xia, Shujun Chen, Liang Chen, Yu Zhou, Jianqiao Adv Sci (Weinh) Research Articles Covalent organic frameworks (COFs) have attracted increasing attention for biomedical applications. COFs‐based nanosensitizers with uniform nanoscale morphology and tumor‐specific curative effects are in high demand; however, their synthesis is yet challenging. In this study, distinct COF nanobowls are synthesized in a controlled manner and engineered as activatable nanosensitizers with tumor‐specific sonodynamic activity. High crystallinity ensures an ordered porous structure of COF nanobowls for the efficient loading of the small‐molecule sonosensitizer rose bengal (RB). To circumvent non‐specific damage to normal tissues, the sonosensitization effect is specifically inhibited by the in situ growth of manganese oxide (MnO (x) ) on RB‐loaded COFs. Upon reaction with tumor‐overexpressed glutathione (GSH), the “gatekeeper” MnO (x) is rapidly decomposed to recover the reactive oxygen species (ROS) generation capability of the COF nanosensitizers under ultrasound irradiation. Increased intracellular ROS stress and GSH consumption concomitantly induce ferroptosis to improve sonodynamic efficacy. Additionally, the unconventional bowl‐shaped morphology renders the nanosensitizers with enhanced tumor accumulation and retention. The combination of tumor‐specific sonodynamic therapy and ferroptosis achieves high efficacy in killing cancer cells and inhibiting tumor growth. This study paves the way for the development of COF nanosensitizers with unconventional morphologies for biomedicine, offering a paradigm to realize activatable and ferroptosis‐augmented sonodynamic tumor therapy. John Wiley and Sons Inc. 2023-01-03 /pmc/articles/PMC9951320/ /pubmed/36594611 http://dx.doi.org/10.1002/advs.202206009 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Zhang, Shanshan Xia, Shujun Chen, Liang Chen, Yu Zhou, Jianqiao Covalent Organic Framework Nanobowls as Activatable Nanosensitizers for Tumor‐Specific and Ferroptosis‐Augmented Sonodynamic Therapy |
title | Covalent Organic Framework Nanobowls as Activatable Nanosensitizers for Tumor‐Specific and Ferroptosis‐Augmented Sonodynamic Therapy |
title_full | Covalent Organic Framework Nanobowls as Activatable Nanosensitizers for Tumor‐Specific and Ferroptosis‐Augmented Sonodynamic Therapy |
title_fullStr | Covalent Organic Framework Nanobowls as Activatable Nanosensitizers for Tumor‐Specific and Ferroptosis‐Augmented Sonodynamic Therapy |
title_full_unstemmed | Covalent Organic Framework Nanobowls as Activatable Nanosensitizers for Tumor‐Specific and Ferroptosis‐Augmented Sonodynamic Therapy |
title_short | Covalent Organic Framework Nanobowls as Activatable Nanosensitizers for Tumor‐Specific and Ferroptosis‐Augmented Sonodynamic Therapy |
title_sort | covalent organic framework nanobowls as activatable nanosensitizers for tumor‐specific and ferroptosis‐augmented sonodynamic therapy |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951320/ https://www.ncbi.nlm.nih.gov/pubmed/36594611 http://dx.doi.org/10.1002/advs.202206009 |
work_keys_str_mv | AT zhangshanshan covalentorganicframeworknanobowlsasactivatablenanosensitizersfortumorspecificandferroptosisaugmentedsonodynamictherapy AT xiashujun covalentorganicframeworknanobowlsasactivatablenanosensitizersfortumorspecificandferroptosisaugmentedsonodynamictherapy AT chenliang covalentorganicframeworknanobowlsasactivatablenanosensitizersfortumorspecificandferroptosisaugmentedsonodynamictherapy AT chenyu covalentorganicframeworknanobowlsasactivatablenanosensitizersfortumorspecificandferroptosisaugmentedsonodynamictherapy AT zhoujianqiao covalentorganicframeworknanobowlsasactivatablenanosensitizersfortumorspecificandferroptosisaugmentedsonodynamictherapy |