Cargando…

Modulation of the Oxidation End‐Product Toward Polysulfides‐Free and Sustainable Lithium‐Pyrite Thermal Batteries

The FeS(2) has abundant reserves and a high specific capacity (894 mAh g(−1)), commonly used to fabricate Li‐FeS(2) primary batteries, like LiM(x)‐FeS(2) thermal batteries (working at ≈500 °C). However, Li–FeS(2) batteries struggle to function as rechargeable batteries due to serious issues such as...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Yang, Lu, Hongfei, Lyu, Nawei, Zhang, Di, Jiang, Xin, Sun, Bin, Liu, Kai, Wu, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951353/
https://www.ncbi.nlm.nih.gov/pubmed/36603164
http://dx.doi.org/10.1002/advs.202205888
_version_ 1784893371379089408
author Jin, Yang
Lu, Hongfei
Lyu, Nawei
Zhang, Di
Jiang, Xin
Sun, Bin
Liu, Kai
Wu, Hui
author_facet Jin, Yang
Lu, Hongfei
Lyu, Nawei
Zhang, Di
Jiang, Xin
Sun, Bin
Liu, Kai
Wu, Hui
author_sort Jin, Yang
collection PubMed
description The FeS(2) has abundant reserves and a high specific capacity (894 mAh g(−1)), commonly used to fabricate Li‐FeS(2) primary batteries, like LiM(x)‐FeS(2) thermal batteries (working at ≈500 °C). However, Li–FeS(2) batteries struggle to function as rechargeable batteries due to serious issues such as pulverization and polysulfide shuttling. Herein, highly reversible solid‐state Li‐FeS(2) batteries operating at 300 °C are designed. Molten salt‐based FeS(2) slurry cathodes address the notorious electrode pulverization problem by encapsulating pulverized particles in time with e(−) and Li⁺ flow conductors. In addition, the solid electrolyte LLZTO tube serves as a hard separator and fast Li(+) channel, effectively separating the molten electrodes to construct a liquid–solid–liquid structure instead of the solid–liquid–solid structure of LiM(x)‐FeS(2) thermal batteries. Most importantly, these high‐temperature Li–FeS(2) solid‐state batteries achieve FeS(2) conversion to Li(2)S and Fe at discharge and further back to FeS(2) at charge, unlike room‐temperature Li‐FeS(2) batteries where FeS and S act as oxidation products. Therefore, these new‐type Li‐FeS(2) batteries have a lower operating temperature than Li‐FeS(2) thermal batteries and perform highly reversible electrochemical reactions, which can be cycled stably up to 2000 times with a high specific capacity of ≈750 mAh g(−1) in the prototype batteries.
format Online
Article
Text
id pubmed-9951353
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-99513532023-02-25 Modulation of the Oxidation End‐Product Toward Polysulfides‐Free and Sustainable Lithium‐Pyrite Thermal Batteries Jin, Yang Lu, Hongfei Lyu, Nawei Zhang, Di Jiang, Xin Sun, Bin Liu, Kai Wu, Hui Adv Sci (Weinh) Research Articles The FeS(2) has abundant reserves and a high specific capacity (894 mAh g(−1)), commonly used to fabricate Li‐FeS(2) primary batteries, like LiM(x)‐FeS(2) thermal batteries (working at ≈500 °C). However, Li–FeS(2) batteries struggle to function as rechargeable batteries due to serious issues such as pulverization and polysulfide shuttling. Herein, highly reversible solid‐state Li‐FeS(2) batteries operating at 300 °C are designed. Molten salt‐based FeS(2) slurry cathodes address the notorious electrode pulverization problem by encapsulating pulverized particles in time with e(−) and Li⁺ flow conductors. In addition, the solid electrolyte LLZTO tube serves as a hard separator and fast Li(+) channel, effectively separating the molten electrodes to construct a liquid–solid–liquid structure instead of the solid–liquid–solid structure of LiM(x)‐FeS(2) thermal batteries. Most importantly, these high‐temperature Li–FeS(2) solid‐state batteries achieve FeS(2) conversion to Li(2)S and Fe at discharge and further back to FeS(2) at charge, unlike room‐temperature Li‐FeS(2) batteries where FeS and S act as oxidation products. Therefore, these new‐type Li‐FeS(2) batteries have a lower operating temperature than Li‐FeS(2) thermal batteries and perform highly reversible electrochemical reactions, which can be cycled stably up to 2000 times with a high specific capacity of ≈750 mAh g(−1) in the prototype batteries. John Wiley and Sons Inc. 2023-01-05 /pmc/articles/PMC9951353/ /pubmed/36603164 http://dx.doi.org/10.1002/advs.202205888 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Jin, Yang
Lu, Hongfei
Lyu, Nawei
Zhang, Di
Jiang, Xin
Sun, Bin
Liu, Kai
Wu, Hui
Modulation of the Oxidation End‐Product Toward Polysulfides‐Free and Sustainable Lithium‐Pyrite Thermal Batteries
title Modulation of the Oxidation End‐Product Toward Polysulfides‐Free and Sustainable Lithium‐Pyrite Thermal Batteries
title_full Modulation of the Oxidation End‐Product Toward Polysulfides‐Free and Sustainable Lithium‐Pyrite Thermal Batteries
title_fullStr Modulation of the Oxidation End‐Product Toward Polysulfides‐Free and Sustainable Lithium‐Pyrite Thermal Batteries
title_full_unstemmed Modulation of the Oxidation End‐Product Toward Polysulfides‐Free and Sustainable Lithium‐Pyrite Thermal Batteries
title_short Modulation of the Oxidation End‐Product Toward Polysulfides‐Free and Sustainable Lithium‐Pyrite Thermal Batteries
title_sort modulation of the oxidation end‐product toward polysulfides‐free and sustainable lithium‐pyrite thermal batteries
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951353/
https://www.ncbi.nlm.nih.gov/pubmed/36603164
http://dx.doi.org/10.1002/advs.202205888
work_keys_str_mv AT jinyang modulationoftheoxidationendproducttowardpolysulfidesfreeandsustainablelithiumpyritethermalbatteries
AT luhongfei modulationoftheoxidationendproducttowardpolysulfidesfreeandsustainablelithiumpyritethermalbatteries
AT lyunawei modulationoftheoxidationendproducttowardpolysulfidesfreeandsustainablelithiumpyritethermalbatteries
AT zhangdi modulationoftheoxidationendproducttowardpolysulfidesfreeandsustainablelithiumpyritethermalbatteries
AT jiangxin modulationoftheoxidationendproducttowardpolysulfidesfreeandsustainablelithiumpyritethermalbatteries
AT sunbin modulationoftheoxidationendproducttowardpolysulfidesfreeandsustainablelithiumpyritethermalbatteries
AT liukai modulationoftheoxidationendproducttowardpolysulfidesfreeandsustainablelithiumpyritethermalbatteries
AT wuhui modulationoftheoxidationendproducttowardpolysulfidesfreeandsustainablelithiumpyritethermalbatteries