Cargando…
Bioinformatic analysis of underlying mechanisms of Kawasaki disease via Weighted Gene Correlation Network Analysis (WGCNA) and the Least Absolute Shrinkage and Selection Operator method (LASSO) regression model
BACKGROUND: Kawasaki disease (KD) is a febrile systemic vasculitis involvingchildren younger than five years old. However, the specific biomarkers and precise mechanisms of this disease are not fully understood, which can delay the best treatment time, hence, this study aimed to detect the potential...
Autores principales: | Xie, Yaxue, Shi, Hongshuo, Han, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951419/ https://www.ncbi.nlm.nih.gov/pubmed/36829193 http://dx.doi.org/10.1186/s12887-023-03896-4 |
Ejemplares similares
-
Using Multivariate Regression Model with Least Absolute Shrinkage and Selection Operator (LASSO) to Predict the Incidence of Xerostomia after Intensity-Modulated Radiotherapy for Head and Neck Cancer
por: Lee, Tsair-Fwu, et al.
Publicado: (2014) -
Combining least absolute shrinkage and selection operator (LASSO) and principal-components analysis for detection of gene-gene interactions in genome-wide association studies
por: D'Angelo, Gina M, et al.
Publicado: (2009) -
Regression shrinkage and selection via least quantile shrinkage and selection operator
por: Daneshvar, Alireza, et al.
Publicado: (2023) -
Ferroptosis‐based molecular prognostic model for adrenocortical carcinoma based on least absolute shrinkage and selection operator regression
por: Lin, Chen, et al.
Publicado: (2022) -
Identification of feature genes and pathways for Alzheimer's disease via WGCNA and LASSO regression
por: Sun, Hongyu, et al.
Publicado: (2022)