Cargando…
Double-head transformer neural network for molecular property prediction
Existing molecular property prediction methods based on deep learning ignore the generalization ability of the nonlinear representation of molecular features and the reasonable assignment of weights of molecular features, making it difficult to further improve the accuracy of molecular property pred...
Autores principales: | Song, Yuanbing, Chen, Jinghua, Wang, Wenju, Chen, Gang, Ma, Zhichong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951429/ https://www.ncbi.nlm.nih.gov/pubmed/36823530 http://dx.doi.org/10.1186/s13321-023-00700-4 |
Ejemplares similares
-
ABT-MPNN: an atom-bond transformer-based message-passing neural network for molecular property prediction
por: Liu, Chengyou, et al.
Publicado: (2023) -
Applications of artificial neural networks in microorganism image analysis: a comprehensive review from conventional multilayer perceptron to popular convolutional neural network and potential visual transformer
por: Zhang, Jinghua, et al.
Publicado: (2022) -
Prediction of ground-level ozone by SOM-NARX hybrid neural network based on the correlation of predictors
por: Xiong, Qinqing, et al.
Publicado: (2022) -
Algebraic graph-assisted bidirectional transformers for molecular property prediction
por: Chen, Dong, et al.
Publicado: (2021) -
Quantitative evaluation of explainable graph neural networks for molecular property prediction
por: Rao, Jiahua, et al.
Publicado: (2022)